

Is To See Still To Believe in Deepfake Era?

Jun-Cheng Chen

pullpull@citi.sinica.edu.tw

OpenMFC Workshop

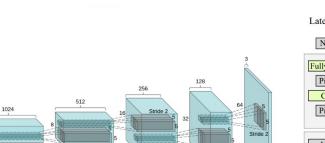
Artificial Intelligence and Image Understanding Lab (AIIU) Research Center of Information Technology Innovation, Academia Sinica 2021/12/09

Motivation

- Malicious Face Forgery Applications
 - Pornography
 - ➢ Politics

image source: https://technews.tw/2020/10/25/deepfake-deepnude/

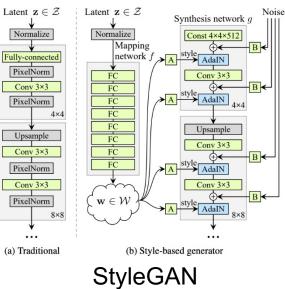
The Evolution of Content Editing^(1/4)



CONV

CONV 4 G(z)

CONV 2



2018

DCGAN [Radford et al. 2016]

CONV

LightStage [USC ICT 2015]

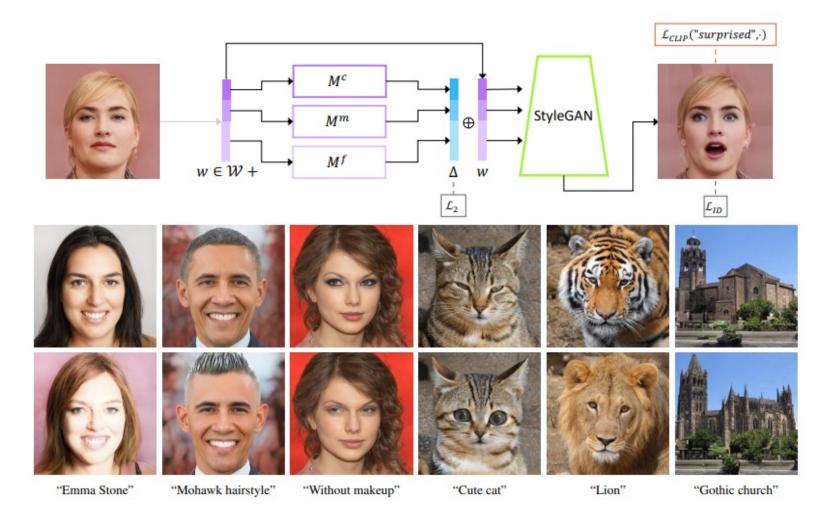
[Karras et al. 2019]

Research Center for Information Technology Innovation, Academia Sinica

100 z -

Project and reshape

The Evolution of Content Editing^(2/4)

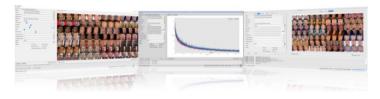


StyleCLIP [Patashnik et al. 2021]

The Evolution of Content Editing^(3/4)

FaceApp

Faceswap is the leading free and Open Source multi-platform Deepfakes software.



Faceswap

DeepFaceLab

https://arxiv.org/abs/2005.05535

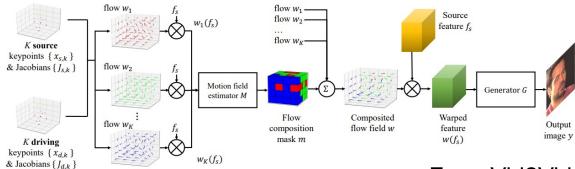
the leading software for creating deepfakes

wered by	DESIGNED FOR	DirectX
	📀 NVIDIA.	
TensorFlow	CUDA	

DeepFaceLab

Video credit: *Chris Ume* and *Miles Fisher*

The Evolution of Content Editing^(4/4)



(a) Original video (b) Co

Latent

A > Fourier feat.

Conv 1×1

Lo

LI

L2

L3

L4

L5

L6 L7 L8 L9

L10

LII

L12

L13

ToRGB

EMA

Conv 3×3 or 1×1

Upsample 2× or 4×

Leaky ReLU

Downsample 2×

EMA +

Conv 1×1

A Mod

Demod

Custom

CUDA

kernel

ToRGB

StyleGAN3

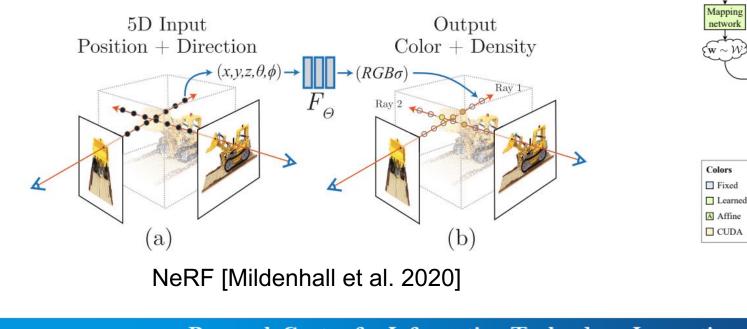
[Karras et al. 2021]

Mod

Fixed time, changing viewpoints Novel viewpoint video

(c) Our re-rendered novel-view results

Face-Vid2Vid [Wang et al. 2021]



Challenges

- The evolution of the deepfake technology is ongoing and upgrading in a very fast speed.
- The technologies are widely accessible to the public and much easier to use than before.

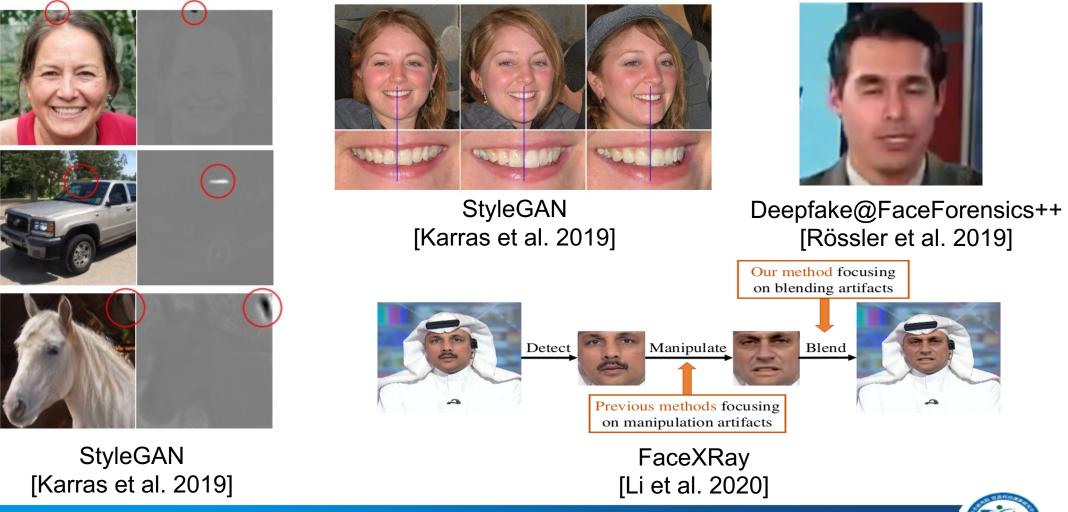
7

Possible Countermeasures

- Passive Defense
 - Deepfake Detection
 - Digital Watermark
- Active Defense
 - >Adversarial Attack

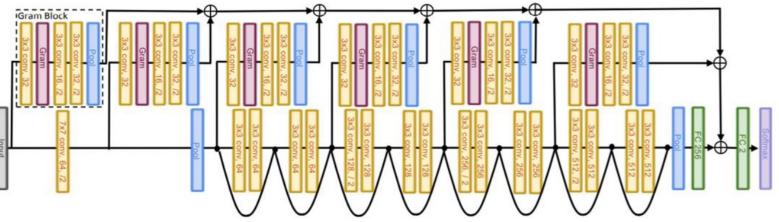
Deepfake Detection

• Sample visual cues for detection



Global Texture Enhancement for Fake Face Detection In the Wild

512×512



Training set	Testing set	Method	Original %	8x↓%	JPEG %	JPEG 8x↓	Blur %	Noise %	Avg.
StyleGAN vs.	StyleGAN vs. CelebA-HQ	Co-detect ResNet Gram-Net	$\begin{array}{c} 79.93 \pm 1.34 \\ 96.73 \pm 3.60 \\ \textbf{99.10} \pm \textbf{1.36} \end{array}$	$\begin{array}{c} 71.80 \pm 1.30 \\ 85.10 \pm 6.22 \\ \textbf{95.84} \pm \textbf{1.98} \end{array}$	$\begin{array}{c} 74.58 \pm 3.25 \\ 96.68 \pm 3.50 \\ \textbf{99.05} \pm \textbf{1.37} \end{array}$	$\begin{array}{c} 71.25 \pm 1.18 \\ 83.33 \pm 5.95 \\ \textbf{92.39} \pm \textbf{2.66} \end{array}$	$\begin{array}{c} 71.39 \pm 1.42 \\ 79.48 \pm 8.70 \\ \textbf{94.20} \pm \textbf{5.57} \end{array}$	$\begin{array}{c} 54.09 \pm 2.45 \\ 87.92 \pm 6.16 \\ \textbf{92.47} \pm \textbf{4.52} \end{array}$	70.51 88.20 95.51
CelebA-HQ	PGGAN vs. CelebA-HQ	Co-detect ResNet Gram-Net	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 62.02 \pm 2.86 \\ 77.75 \pm 4.82 \\ \textbf{82.40} \pm \textbf{6.30} \end{array}$	$\begin{array}{c} 64.08 \pm 1.93 \\ 89.35 \pm 1.50 \\ \textbf{94.65} \pm \textbf{3.28} \end{array}$	$\begin{array}{c} 61.24 \pm 2.28 \\ 69.35 \pm 3.25 \\ \textbf{79.77} \pm \textbf{6.13} \end{array}$	$\begin{array}{c} 62.46 \pm 3.31 \\ 78.06 \pm 7.57 \\ \textbf{91.96} \pm \textbf{4.78} \end{array}$	$\begin{array}{c} 49.96 \pm 0.28 \\ 82.65 \pm 2.37 \\ \textbf{88.29} \pm \textbf{3.44} \end{array}$	61.83 81.82 89.26
PGGAN vs.	PGGAN vs. CelebA-HQ	Co-detect ResNet Gram-Net	$\begin{array}{c} 91.14 \pm 0.61 \\ 97.38 \pm 0.52 \\ \textbf{98.78} \pm \textbf{0.49} \end{array}$	$\begin{array}{c} 82.94 \pm 1.03 \\ 90.87 \pm 1.90 \\ \textbf{94.66} \pm \textbf{3.10} \end{array}$	$\begin{array}{c} 86.00 \pm 1.70 \\ 94.67 \pm 1.15 \\ \textbf{97.29} \pm \textbf{1.05} \end{array}$	$\begin{array}{c} 82.46 \pm 1.06 \\ 89.93 \pm 1.50 \\ \textbf{94.08} \pm \textbf{3.22} \end{array}$	$\begin{array}{c} 84.24 \pm 0.93 \\ 97.25 \pm 0.87 \\ \textbf{98.55} \pm \textbf{0.92} \end{array}$	$\begin{array}{c} 54.77 \pm 2.42 \\ 66.60 \pm 9.61 \\ \textbf{70.32} \pm \textbf{12.04} \end{array}$	80.26 89.45 92.28
CelebA-HQ	StyleGAN vs. CelebA-HQ	Co-detect ResNet Gram-Net	$\begin{array}{c} 57.30 \pm 1.62 \\ 97.98 \pm 1.90 \\ \textbf{98.55} \pm \textbf{0.89} \end{array}$	$\begin{array}{c} 57.41 \pm 0.85 \\ 87.91 \pm 1.01 \\ \textbf{91.57} \pm \textbf{2.95} \end{array}$	$\begin{array}{c} 52.90 \pm 1.67 \\ 92.03 \pm 4.14 \\ \textbf{94.28} \pm \textbf{3.67} \end{array}$	$\begin{array}{c} 82.46 \pm 1.06 \\ 82.23 \pm 1.39 \\ \textbf{83.64} \pm \textbf{3.43} \end{array}$	$\begin{array}{c} 57.41 \pm 0.93 \\ 94.79 \pm 1.32 \\ \textbf{97.05} \pm \textbf{1.04} \end{array}$	$\begin{array}{c} 50.08 \pm 0.10 \\ \textbf{60.89} \pm \textbf{7.24} \\ 60.07 \pm \textbf{7.32} \end{array}$	51.47 85.97 87.52
StyleGAN vs. FFHQ	StyleGAN vs. FFHQ	Co-detect ResNet Gram-Net	$\begin{array}{c} 69.73 \pm 2.41 \\ 90.27 \pm 3.05 \\ \textbf{98.96} \pm \textbf{0.51} \end{array}$	$\begin{array}{c} 67.27 \pm 1.68 \\ 70.99 \pm 1.13 \\ \textbf{89.22} \pm \textbf{4.44} \end{array}$	$\begin{array}{c} 67.48 \pm 2.83 \\ 89.35 \pm 3.42 \\ \textbf{98.69} \pm \textbf{0.81} \end{array}$	$\begin{array}{c} 64.65 \pm 1.67 \\ 67.96 \pm 1.13 \\ \textbf{87.86} \pm \textbf{3.42} \end{array}$	$\begin{array}{c} 64.55 \pm 1.93 \\ \textbf{75.60} \pm \textbf{10.75} \\ 70.99 \pm 6.07 \end{array}$	$\begin{array}{c} 54.66 \pm 3.97 \\ 81.32 \pm 5.06 \\ \textbf{94.27} \pm \textbf{2.12} \end{array}$	64.74 81.50 90.00

64x64

512×512

64x64

$$G^{l} = (F_{i}^{lT}F_{j}^{l})_{n \times n} = \begin{bmatrix} F_{1}^{lT}F_{1}^{l} & \cdots & F_{1}^{lT}F_{n}^{l} \\ \vdots & \ddots & \\ F_{n}^{lT}F_{1}^{l} & \cdots & F_{n}^{lT}F_{n}^{l} \end{bmatrix}$$

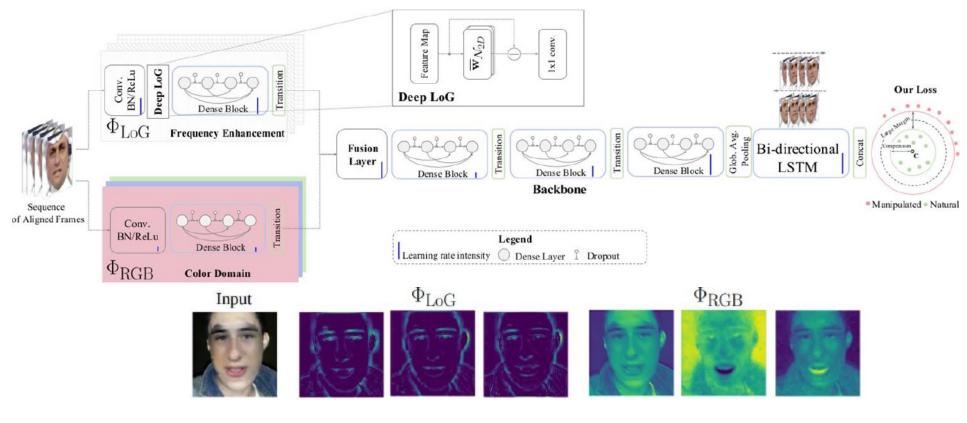
[Liu et al. 2020]

Research Center for Information Technology Innovation, Academia Sinica

kernel size 25

std 5

Two-branch Recurrent Network for Isolating Deepfakes in Videos



[Masi et al. 2020]

CNN-generated images are surprisingly easy to spot... for now

ProGAN StyleGAN BigGAN CycleGAN StarGAN GauGAN

CRN

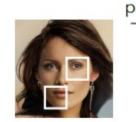
IMLE

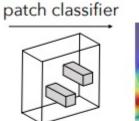
Super-res. Deepfakes

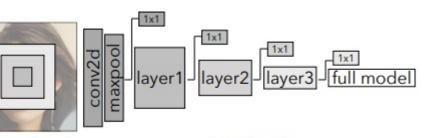
		Training settings			Individual test generators							Total						
Family	Family Name	Train	Input	No.	Aug	ments	Pro-	Style-	Big-	Cycle-	Star-	Gau-	CRN	IMLE	SITD	SAN	Deep-	mAP
			mpar	Class	Blur	JPEG	GAN	GAN	GAN	GAN	GAN	GAN	ciut	INTEL	SILD	bini,	Fake	
Zhana	Cyc-Im	CycleGAN	RGB	-			84.3	65.7	55.1	100.	99.2	79.9	74.5	90.6	67.8	82.9	53.2	77.6
Zhang	Cyc-Spec	CycleGAN	Spec	-			51.4	52.7	79.6	100.	100.	70.8	64.7	71.3	92.2	78.5	44.5	73.2
et al. [50]	Auto-Im	AutoGAN	RGB				73.8	60.1	46.1	99.9	100.	49.0	82.5	71.0	80.1	86.7	80.8	75.5
[0]	Auto-Spec	AutoGAN	Spec	-			75.6	68.6	84.9	100.	100.	61.0	80.8	75.3	89.9	66.1	39.0	76.5
	2-class	ProGAN	RGB	2	~	~	98.8	78.3	66.4	88.7	87.3	87.4	94.0	97.3	85.2	52.9	58.1	81.3
	4-class	ProGAN	RGB	4	~	1	99.8	87.0	74.0	93.2	92.3	94.1	95.8	97.5	87.8	58.5	59.6	85.4
	8-class	ProGAN	RGB	8	~	~	99.9	94.2	78.9	94.3	91.9	95.4	98.9	99.4	91.2	58.6	63.8	87.9
	16-class	ProGAN	RGB	16	~	1	100.	98.2	87.7	96.4	95.5	98.1	99.0	99.7	95.3	63.1	71.9	91.4
Ours	No aug	ProGAN	RGB	20			100.	96.3	72.2	84.0	100.	67.0	93.5	90.3	96.2	93.6	98.2	90.1
	Blur only	ProGAN	RGB	20	~		100.	99.0	82.5	90.1	100.	74.7	66.6	66.7	99.6	53.7	95.1	84.4
	JPEG only	ProGAN	RGB	20		1	100.	99.0	87.8	93.2	91.8	97.5	99.0	99.5	88.7	78.1	88.1	93.0
	Blur+JPEG (0.5)	ProGAN	RGB	20	~	1	100.	98.5	88.2	96.8	95.4	98.1	98.9	99.5	92.7	63.9	66.3	90.8
	Blur+JPEG (0.1)	ProGAN	RGB	20	t	t	100.	99.6	84.5	93.5	98.2	89.5	98.2	98.4	97.2	70.5	89.0	92.6

[Wang et al. 2020]

What makes fake images detectable? Understanding properties that generalize







Average Fake Examples **Real Examples** Heatmap CelebAHQ PGAN CelebAHQ StyleGAN CelebAHQ Glow CelebA GMM FFHQ PGAN FFHQ StyleGAN2

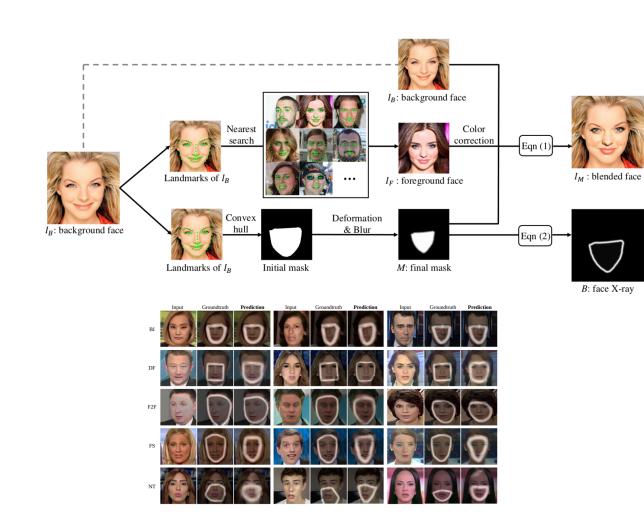
	Are	chitectu	res	FFHQ dataset			
Model	PGAN	SGAN	Glow*	GMM	PGAN	SGAN	SGAN2
Resnet Layer 1	100.0	97.22	72.80	80.69	99.81	72.91	71.81
Xception Block 1	100.0	98.68	95.48	76.21	99.68	81.35	77.40
Xception Block 2	100.0	99.99	67.49	91.38	100.0	90.12	90.85
Xception Block 3	100.0	100.0	74.98	80.96	100.0	92.91	91.45
Xception Block 4	100.0	99.99	66.79	42.82	100.0	95.85	90.62
Xception Block 5	100.0	100.0	60.44	48.92	100.0	93.09	89.08
[2] MesoInception4	100.0	97.90	49.72	45.98	98.71	80.57	$7\bar{1}.\bar{2}7$
[13] Resnet-18	100.0	64.80	47.06	54.69	79.20	51.15	52.37
[6] Xception	100.0	99.75	55.85	40.98	99.94	85.69	74.33
[33] CNN (p=0.1)	100.0	98.41	90.46	50.65	99.95	90.48	85.27
[33] CNN (p=0.5)	100.0	97.34	97.32	73.33	99.93	88.98	84.58

patch classifier

[Chai et al. 2020]

Research Center for Information Technology Innovation, Academia Sinica

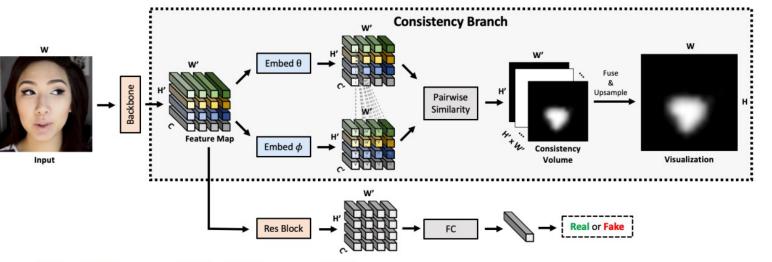
Face X-ray for More General Face Forgery Detection



Model	Trainin	ig set		Te	st set Al	JC	
WIOUEI	DF	BI	DF	F2F	FS	NT	FF++
Xception [36]	\checkmark	_	99.38	75.05	49.13	80.39	76.34
HRNet	\checkmark	_	99.26	68.25	39.15	71.39	69.51
Eago V rox	\checkmark	_	99.17	94.14	75.34	93.85	90.62
Face X-ray	\checkmark	\checkmark	99.12	97.64	98.00	97.77	97.97
	F2F	BI	DF	F2F	FS	NT	FF++
Xception [36]	\checkmark	_	87.56	99.53	65.23	65.90	79.55
HRNet	\checkmark	_	83.64	99.50	56.60	61.26	74.71
Face X-ray	\checkmark	_	98.52	99.06	72.69	91.49	93.41
Face A-lay	\checkmark	\checkmark	99.03	99.31	98.64	98.14	98.78
	FS	BI	DF	F2F	FS	NT	FF++
Xception [36]	\checkmark	_	70.12	61.70	99.36	68.71	74.91
HRNet	\checkmark	_	63.59	64.12	99.24	68.89	73.96
Face X-ray	\checkmark	_	93.77	92.29	99.20	86.63	93.13
Face A-lay	\checkmark	\checkmark	99.10	98.16	99.09	96.66	98.25
	NT	BI	DF	F2F	FS	NT	FF++
Xception [36]	\checkmark	_	93.09	84.82	47.98	99.50	83.42
HRNet	\checkmark	_	94.05	87.26	64.10	98.6 1	86.01
Face X-ray	\checkmark	_	99.14	98.43	70.56	98.93	91.76
	\checkmark	\checkmark	99.27	98.43	97.85	99.27	98.71
	FF++	BI	DF	F2F	FS	NT	FF++
Xception [36]	_	\checkmark	98.95	97.86	89.29	97.29	95.85
HRNet	-	\checkmark	99.11	97.42	83.15	98.17	94.46
Face X-ray	_	\checkmark	99.17	98.57	98.21	98.13	98.52

[Li et al. 2020]

Learning Self-Consistency for Deepfake Detection



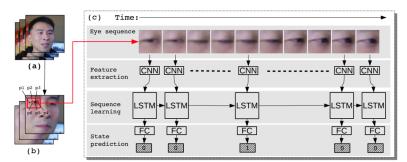
Deepfake Predicted as Deepfake	Modified Region	Predicted Consistency Map	Deepfake Predicted as Real	Modified Region	Predicted Consistency Map	Real Image Predicted as Deepfake	Modified Region	Predicted Consistency Map	Real Image Predicted as Real	Modified Region	Predicted Consistency Map
			P					ŝ	11-3		33
CO	T	U	and the second s		_	B		ŧ	20		
1		٠			7	250					
T						2			02.0		

Method	Backbone	Train Set	Test Set (AUC (%))						
method	Duckbone	Train Sec	DF	F2F	FS	NT	FF++		
MIL [59]	Xception	FF++	99.51	98.59	94.86	97.96	97.73		
Fakespotter [56]	ResNet-50	FF++, CD2, DFDC	-	-	-	-	98.50		
XN-avg [45]	Xception	FF++	99.38	99.53	99.36	97.29	98.89		
Face X-ray [25]	HRNet	FF++	99.12	99.31	99.09	99.27	99.20		
S-MIL-T [27]	Xception	FF++	99.84	99.34	99.61	98.85	99.41		
PCL + I2G	ResNet-34	FF++	100.00	99.57	100.00	99.58	99.79		

[Zhao et al. 2021]

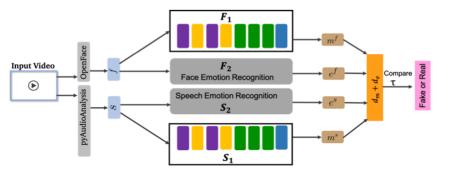
Temporal Consistency

• Video Inconsistency between frames

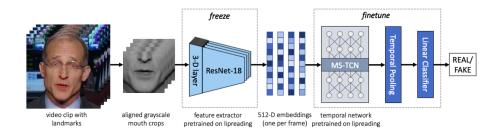


In Ictu Oculi: Exposing AI Generated Fake Face Videos by Detecting Eye Blinking, WIFS 2018

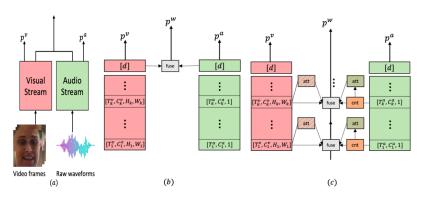
• Audio-visual inconsistency



Emotions Don't Lie: An Audio-Visual Deepfake Detection Method Using Affective Cues, ACMMM



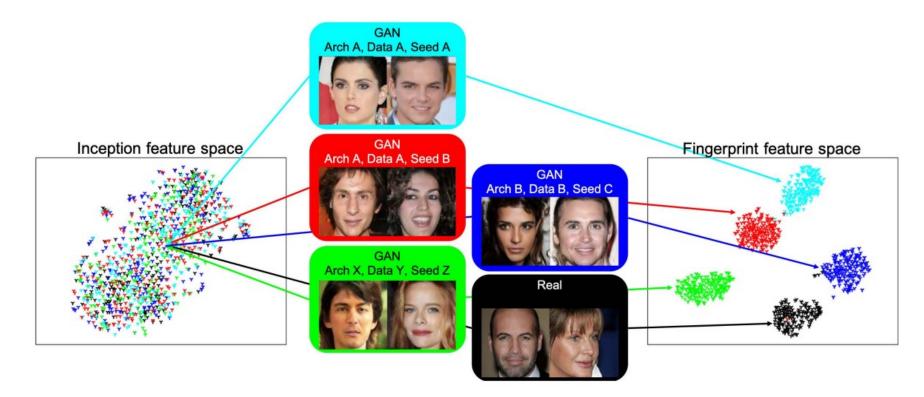
Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection, CVPR 2021



Joint Audio-Visual Deepfake Detection, ICCV 2021

Attributing Fake Images to GANs: Learning and Analyzing GAN Fingerprints

• Every GAN has its fingerprint.

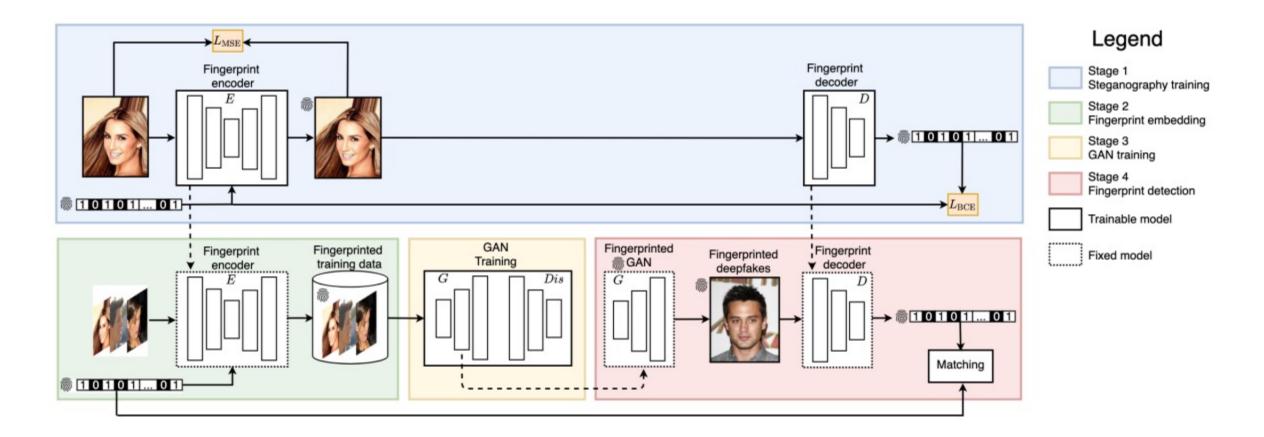


[Ning et al. 2019]

Possible Countermeasures

- Passive Defense
 - Deepfake Detection
 - Digital Watermark
- Active Defense
 - >Adversarial Attack

Artificial Fingerprinting for Generative Models: Rooting Deepfake Attribution in Training Data



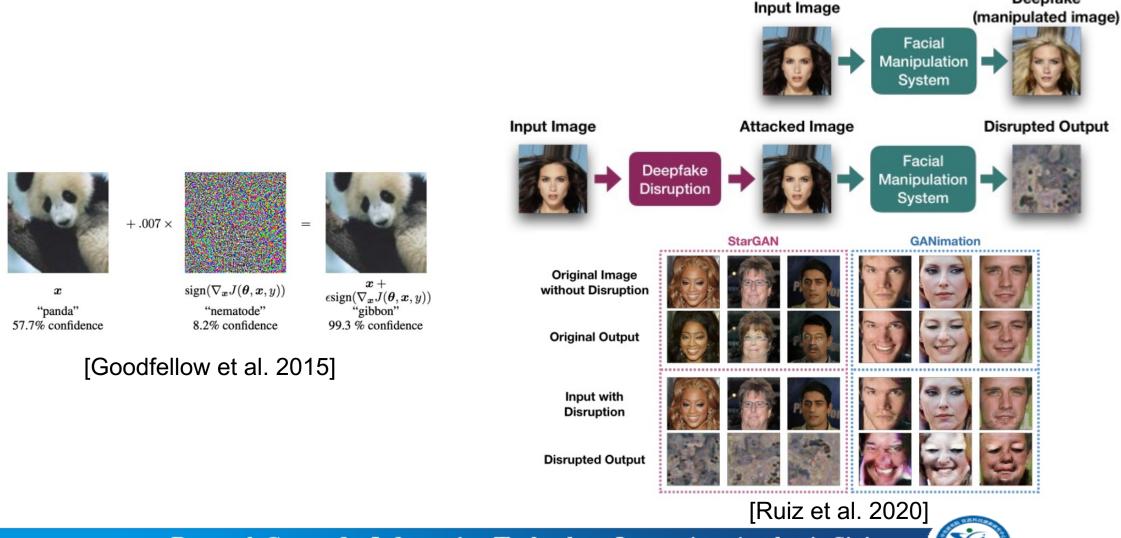
[Ning et al. 2021]

Research Center for Information Technology Innovation, Academia Sinica

Possible Countermeasures

- Passive Defense
 - Deepfake Detection
 - Digital Watermark
- Active Defense
 - >Adversarial Attack

Disrupting Deepfakes: Adversarial Attacks Against Conditional Image Translation Networks and Facial Manipulation Systems



Research Center for Information Technology Innovation, Academia Sinica

Deepfake

Making Forgeries

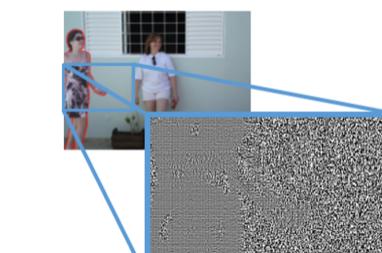
Traces in images allow us to detect forgery

Correlated traces across images

 Photo-response non uniformity noise (PRNU)

Correlated traces within images (usually periodic)

- Compression (e.g. blocking)
- Resampling
- Demosaicing

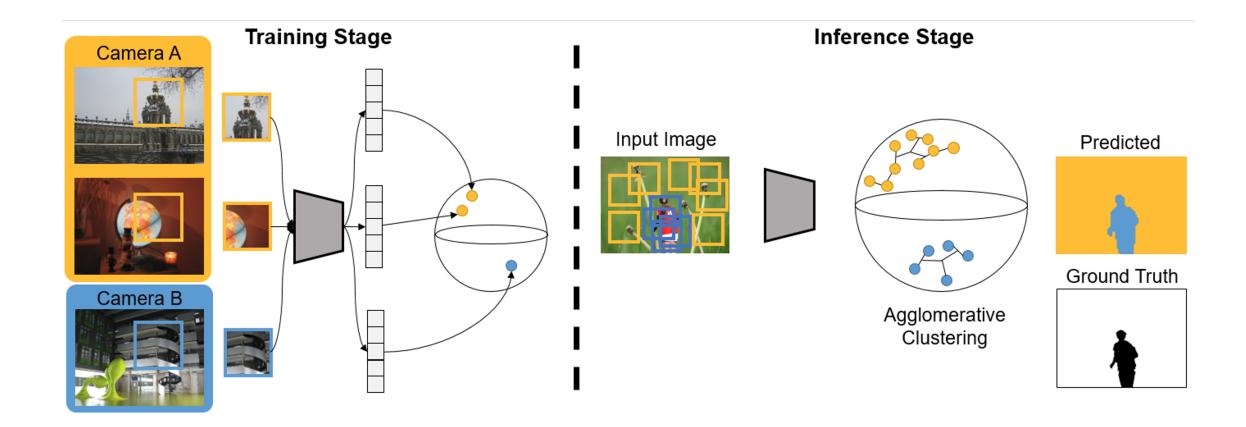


PRNU Differences

Correlated traces across

Correlated traces within images

Patch Contrastive Learning

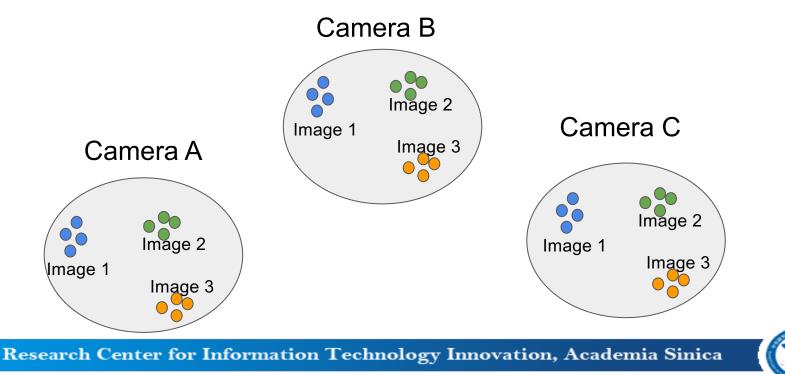


Research Center for Information Technology Innovation, Academia Ader preparation for

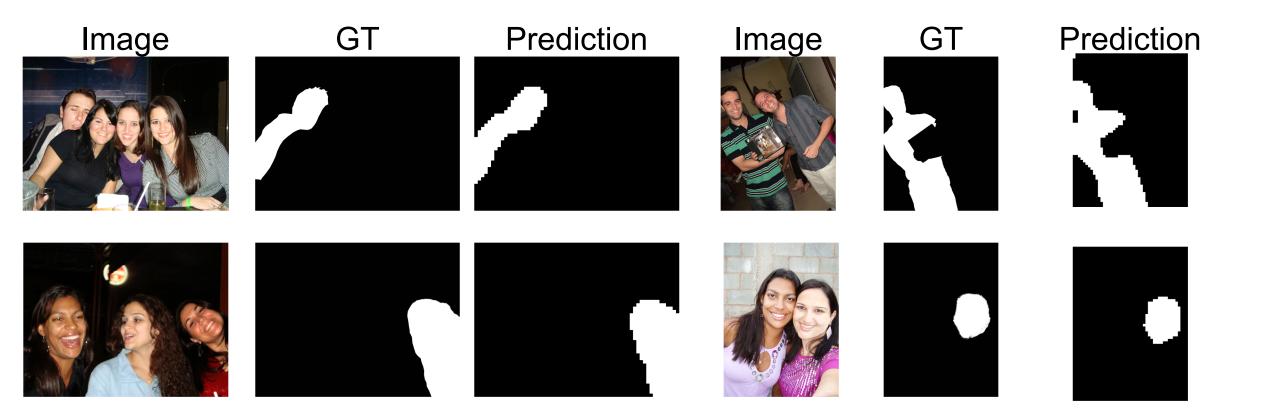
submission

Learned Patch Embeddings

 We want the patch embeddings to be able to discriminate between images taken from different cameras as well as differentiate patches belonging to the same image.



Some Results



Adversarial Defense for Image Classifier

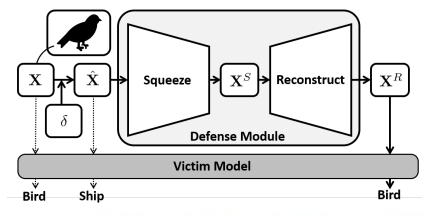
- Non-robust features reconstruction.
- Pre-processing based defense.
- Outperform SOTA comparable methods.

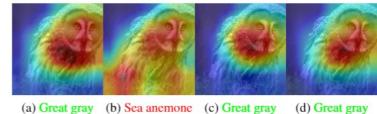
Raw Image Indigo bunting=99.75%

Attacked Image Knot=99.99%

JPG Image Indigo bunting=84.18%

Recovered Image Indigo bunting=99.72%





= 99.9

owl = 99.9

owl = 48.7

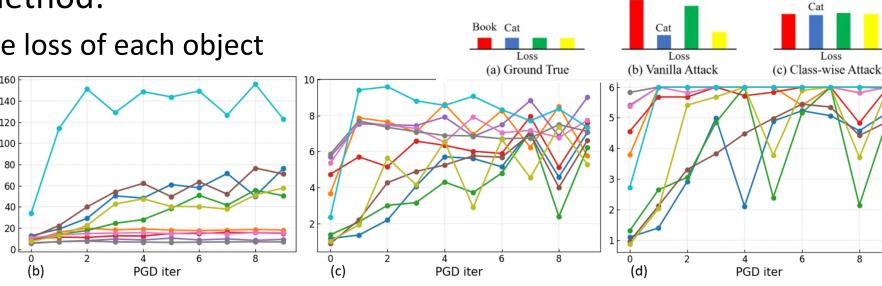
owl = 98.8

(e) Hummingbird(f) Green snake = (g) Vine snake = (h) Hummingbird = 85.14 97.7 72.3 = 80.43

Bo-Han Kung, Pin-Chun Chen, Yu-Cheng Liu, Jun-Cheng Chen, "Squeeze and Reconstruct: Improved Practical Adversarial Defense using Paired Image Compression and Reconstruction," *IEEE International Conference on Image Processing*, September 2021.

Adversarial Defense for Object Detector

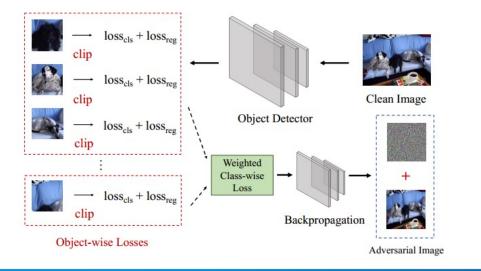
- Vanilla PGD training:
 - Imbalance attack (loss dominates)
 - Overfitting
- Proposed method:
 - > Balance the loss of each object

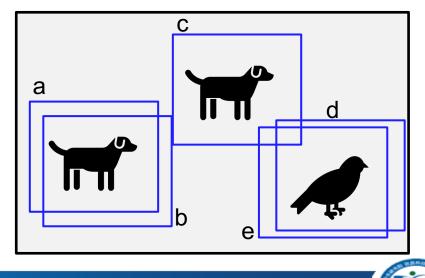


Pin-Chun Chen, Bo-Han Kung, Jun-Cheng Chen, "Class-Aware Robust Adversarial Training for Object Detection," IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

Class-aware Adversarial Training

- **TOAT** $\min_{\theta} \max_{\|\delta\|_{p} \leq \epsilon} \mathcal{L}(\theta, \delta) = \hat{l}_{cls}(x + \delta, \{y\}, \theta) + \hat{l}_{reg}(x + \delta, \{b\}, \theta)$
- **OWAT** $\min_{\theta} \max_{\|\delta\|_{p} \leq \epsilon} \mathcal{L}(\theta, \delta) = \sum_{i=1}^{N_{o}} \hat{l}_{cls}^{o}\left(O_{i} + \delta, \{y_{i}\}, \theta\right) + \sum_{i=1}^{N_{o}} \hat{l}_{reg}^{o}\left(O_{i} + \delta, \{b_{i}\}, \theta\right)$
- **CWAT** $\min_{\theta} \max_{\|\delta\|_{p} \leq \epsilon} \mathcal{L}_{\mathcal{C}}' = \frac{1}{C} \sum_{i=1}^{C} \frac{1}{n_{i}} \sum_{j=1}^{n_{i}} \hat{l}_{cls}^{o} \left(O_{j}, \{y_{j}\}, \theta\right) + \hat{l}_{reg}^{o} \left(O_{j}, \{b_{j}\}, \theta\right)$





Class-aware Adversarial Training

- Adopt "forfree" method.
- 7-30 times faster than vanilla methods.
- Better performance on COCO and PASCAL datasets.

attack	clean	FGS	SM	PGD	CWA	
	crean	A_{cls}	A_{reg}	A_{cls}	A_{reg}	0 111
\mathbf{STD}	0.451	0.133	0.167	0.030	0.029	0.003
\mathbf{MTD}^1	0.190	0.127	0.146	0.110	0.135	0.082
MTD-fast	0.242	0.167	0.182	0.130	0.134	0.077
TOAT-6	0.182	0.120	0.148	0.098	0.123	0.074
OWAT	0.211	0.129	0.169	0.100	0.140	0.074
CWAT	0.237	0.168	0.189	0.142	0.155	0.092

Algo	rithm 1 Fast Class-wise Adversarial Training
Requ	uire: dataset D , training epoch N_{ep} , perturbation
ł	bound ϵ , learning rate γ
1: 1	for epoch = $1,, N_{ep}/m$ do
2:	for minibatch $B \sim D$ do
3:	for $iter = 1$ to m do
4:	Compute gradient of loss with respect to δ
5:	$d_{\delta} \leftarrow \mathbb{E}_{x \in B} \left[\nabla_{\delta} \mathcal{L}_{\mathcal{C}}' \left(\theta, x + \delta \right) \right]$
6:	Update θ with momentum stochastic gradient
7:	$g_{\theta} \leftarrow \mu g_{\theta} - \mathbb{E}_{x \in B} \left[\nabla_{\theta} \mathcal{L} \left(\theta, x + \delta \right) \right]$
8:	$ heta \leftarrow heta + \gamma g_{ heta}$
9:	Update perturbation δ with gradient
10:	$\delta \leftarrow \delta + \epsilon sign\left(d_{\delta}\right)$
11:	Project δ to ℓ_p -ball
12:	end for
13:	end for
14: 6	end for

ReseaTable 1: MS-COCO destaset Technology Innovation, Academia Sinica

Class-aware Adversarial Training

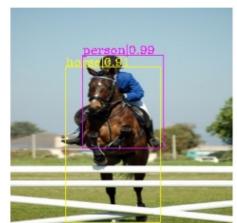
(a) Clean Image Result

(b) Vanilla Adversarial Attack

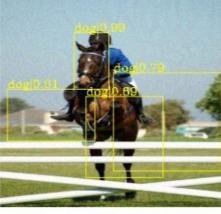
(c) Multi-task domain attack

(d) Object-wise attack

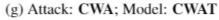
(e) Class-wise Attack

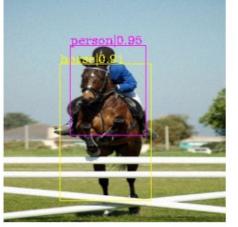


(e) No attack; Model: STD



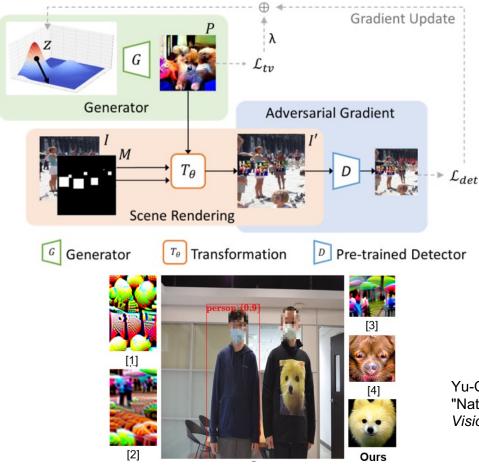
(f) Attack: CWA; Model: STD





(h) Attack: DAG; Model: CWAT

Naturalistic Physical Adversarial Patch for Object Detectors



Trained on Victim	YOLOv2	YOLOv3	YOLO3tiny	YOLOv4	YOLOv4tiny	FasterRCNN
(P1)Ours-YOLOv2	12.06	43.50	32.12	50.56	24.89	52.54
(P2)Ours-YOLOv3	56.67	34.93	41.46	56.29	37.46	61.78
(P3)Ours-YOLOv3tiny	31.61	28.81	10.02	65.13	18.61	55.08
(P4)Ours-YOLOv4	44.27	56.59	56.61	22.63	50.04	59.42
(P5)Ours-YOLOv4tiny	34.68	37.79	21.69	46.80	8.67	59.97
(P6)Ours-FasterRCNN	28.26	39.05	37.06	51.46	29.06	42.47
(P7)Ours-ensemble [†]	49.42	35.46	25.29	51.71	18.51	61.28
Gray	72.66	74.17	67.52	66.52	64.74	61.54
(P8)Random	75.03	73.75	78.91	76.71	75.74	73.00
White	69.63	74.93	66.45	72.48	59.66	65.40
^(P9) Adversarial Patches [*] [42]	2.13	22.51	8.74	12.89	3.25	39.41
$^{(P10)}$ UPC** [19]	48.62	54.40	63.82	64.21	57.93	61.87
the inclusive VOLOS VOLO	A VOLO	4	* · · · · · · · · · · · · · · · · · · ·	VOLO	** /	DOMN.

[†]trained on YOLOv2+YOLOv3+YOLOv4tiny

* trained on YOLO ** trained on FasterRCNN

Yu-Chih-Tuan Hu, Bo-Han Kung, Daniel Stanley Tan, Jun-Cheng Chen, Kai-Lung Hua, Wen-Huang Cheng, "Naturally Physical Adversarial Patch for Object Detectors," *IEEE/CVF International Conference on Computer Vision (ICCV)*, October 2021.

Takeways

- The evolution of the deepfake technologies is fast and requires more ethical consideration for it.
- Educate the public to less rely on the videos as the evidence.

References

- [USC ICT 2015] https://vgl.ict.usc.edu/Research//PresidentialPortrait/
- [Radford et al. 2016] Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." ICLR 2016.
- [Karras et al. 2019] Karras, Tero, Samuli Laine, and Timo Aila. "A style-based generator architecture for generative adversarial networks." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4401-4410. 2019.
- [Patashnik et al. 2021] Patashnik, Or, Zongze Wu, Eli Shechtman, Daniel Cohen-Or, and Dani Lischinski. "Styleclip: Text-driven manipulation of stylegan imagery." In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2085-2094. 2021.
- [Wang et al. 2021] Wang, Ting-Chun, Arun Mallya, and Ming-Yu Liu. "One-shot free-view neural talking-head synthesis for video conferencing." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10039-10049. 2021.
- [Mildenhall et al. 2020] Mildenhall, Ben, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. "Nerf: Representing scenes as neural radiance fields for view synthesis." In European conference on computer vision, pp. 405-421. Springer, Cham, 2020.
- [Karras et al. 2021] Karras, Tero, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. "Alias-free generative adversarial networks." In Thirty-Fifth Conference on Neural Information Processing Systems. 2021.

References

- [Li et al. 2020] Li, Lingzhi, Jianmin Bao, Ting Zhang, Hao Yang, Dong Chen, Fang Wen, and Baining Guo. "Face x-ray for more general face forgery detection." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5001-5010. 2020.
- [Rössler et al. 2019] Rossler, Andreas, Davide Cozzolino, Luisa Verdoliva, Christian Riess, Justus Thies, and Matthias Nießner. "Faceforensics++: Learning to detect manipulated facial images." In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1-11. 2019.
- [Liu et al. 2020] Liu, Zhengzhe, Xiaojuan Qi, and Philip HS Torr. "Global texture enhancement for fake face detection in the wild." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8060-8069. 2020.
- [Masi et al. 2020] Masi, Iacopo, Aditya Killekar, Royston Marian Mascarenhas, Shenoy Pratik Gurudatt, and Wael AbdAlmageed. "Two-branch recurrent network for isolating deepfakes in videos." In European Conference on Computer Vision, pp. 667-684. Springer, Cham, 2020.
- [Wang et al. 2020] Wang, Sheng-Yu, Oliver Wang, Richard Zhang, Andrew Owens, and Alexei A. Efros. "CNNgenerated images are surprisingly easy to spot... for now." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8695-8704. 2020.

References

- [Chai et al. 2020] Chai, Lucy, David Bau, Ser-Nam Lim, and Phillip Isola. "What makes fake images detectable? understanding properties that generalize." In European Conference on Computer Vision, pp. 103-120. Springer, Cham, 2020.
- [Zhao et al. 2021] Zhao, Tianchen, Xiang Xu, Mingze Xu, Hui Ding, Yuanjun Xiong, and Wei Xia. "Learning Self-Consistency for Deepfake Detection." In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15023-15033. 2021.
- [Ning et al. 2019] Yu, Ning, Larry S. Davis, and Mario Fritz. "Attributing fake images to gans: Learning and analyzing gan fingerprints." In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7556-7566. 2019.
- [Ning et al. 2021] Yu, Ning, Vladislav Skripniuk, Sahar Abdelnabi, and Mario Fritz. "Artificial fingerprinting for generative models: Rooting deepfake attribution in training data." In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14448-14457. 2021.
- [Goodfellow et al. 2015] Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples." ICLR 2015.
- [Ruiz et al. 2020] Ruiz, Nataniel, Sarah Adel Bargal, and Stan Sclaroff. "Disrupting deepfakes: Adversarial attacks against conditional image translation networks and facial manipulation systems." In *European Conference on Computer Vision*, pp. 236-251. Springer, Cham, 2020.

