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Motivation

• Malicious Face Forgery Applications
ØPornography
ØPolitics
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image source: https://technews.tw/2020/10/25/deepfake-deepnude/



The Evolution of Content Editing(1/4)
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LightStage
[USC ICT 2015]

DCGAN
[Radford et al. 2016]

StyleGAN
[Karras et al. 2019]



The Evolution of Content Editing(2/4)
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StyleCLIP [Patashnik et al. 2021]



The Evolution of Content Editing(3/4)
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FaceApp

Faceswap

DeepFaceLab
Video credit: Chris Ume 
and Miles Fisher



The Evolution of Content Editing(4/4)
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NeRF [Mildenhall et al. 2020] StyleGAN3
[Karras et al. 2021]

Face-Vid2Vid [Wang et al. 2021]



Challenges

• The evolution of the deepfake technology is ongoing and 
upgrading in a very fast speed.

• The technologies are widely accessible to the public and much 
easier to use than before.
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Possible Countermeasures

• Passive Defense
ØDeepfake Detection
ØDigital Watermark

• Active Defense
ØAdversarial Attack
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Deepfake Detection
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Deepfake@FaceForensics++
[Rössler et al. 2019]

• Sample visual cues for detection

StyleGAN
[Karras et al. 2019]

StyleGAN
[Karras et al. 2019]

FaceXRay
[Li et al. 2020]



Global Texture Enhancement for Fake Face 
Detection In the Wild 
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[Liu et al. 2020]



Two-branch Recurrent Network for 
Isolating Deepfakes in Videos
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[Masi et al. 2020]



CNN-generated images are surprisingly easy to 
spot... for now
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[Wang et al. 2020]



What makes fake images detectable? 
Understanding properties that generalize
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[Chai et al. 2020]



Face X-ray for More General Face Forgery Detection
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[Li et al. 2020]



Learning Self-Consistency for Deepfake
Detection
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[Zhao et al. 2021]



Temporal Consistency
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● Video Inconsistency between frames

● Audio-visual inconsistency

In Ictu Oculi: Exposing AI Generated Fake Face 
Videos by Detecting Eye Blinking, WIFS 2018

Lips Don’t Lie: A Generalisable and Robust 
Approach to Face Forgery Detection, CVPR 2021

Emotions Don't Lie: An Audio-Visual Deepfake 
Detection Method Using Affective Cues, ACMMM 
2020

Joint Audio-Visual Deepfake Detection, ICCV 2021

https://arxiv.org/pdf/1806.02877.pdf
https://arxiv.org/pdf/2012.07657.pdf
https://arxiv.org/pdf/2003.06711.pdf


Attributing Fake Images to GANs: Learning and 
Analyzing GAN Fingerprints

• Every GAN has its fingerprint.
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[Ning et al. 2019]



Possible Countermeasures

• Passive Defense
ØDeepfake Detection
ØDigital Watermark

• Active Defense
ØAdversarial Attack
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Artificial Fingerprinting for Generative Models: 
Rooting Deepfake Attribution in Training Data
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[Ning et al. 2021]



Possible Countermeasures

• Passive Defense
ØDeepfake Detection
ØDigital Watermark

• Active Defense
ØAdversarial Attack
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Disrupting Deepfakes: Adversarial Attacks Against 
Conditional Image Translation Networks and Facial 
Manipulation Systems
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[Ruiz et al. 2020]

[Goodfellow et al. 2015]



Making Forgeries



Traces in images allow us to detect forgery
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Correlated traces 
within images 

Correlated traces across images 
● Photo-response non uniformity noise 

(PRNU)

Correlated traces within images (usually periodic)
● Compression (e.g. blocking)
● Resampling
● Demosaicing

PRNU Differences



Patch Contrastive Learning

• Under preparation for 
submission



Learned Patch Embeddings

● We want the patch embeddings to be able to discriminate 
between images taken from different cameras as well as 
differentiate patches belonging to the same image.
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Some Results

Image ImageGT GTPrediction Prediction



Adversarial Defense for Image Classifier

• Non-robust features reconstruction.
• Pre-processing based defense.
• Outperform SOTA comparable 

methods.

Bo-Han Kung, Pin-Chun Chen, Yu-Cheng Liu, Jun-Cheng Chen, "Squeeze and Reconstruct: Improved Practical Adversarial Defense using
Paired Image Compression and Reconstruction," IEEE International Conference on Image Processing, September 2021.



Adversarial Defense for Object Detector

• Vanilla PGD training:
Ø Imbalance attack (loss dominates)
ØOverfitting

• Proposed method:
ØBalance the loss of each object

• Pin-Chun Chen, Bo-Han Kung, Jun-Cheng Chen, "Class-Aware Robust Adversarial Training for Object Detection," IEEE International 
Conference on Computer Vision and Pattern Recognition (CVPR), 2021.



Class-aware Adversarial Training

• TOAT

• OWAT

• CWAT
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Class-aware Adversarial Training

• Adopt “forfree” method.
• 7-30 times faster than vanilla

methods.
• Better performance on COCO 

and PASCAL datasets.



Class-aware Adversarial Training



Naturalistic Physical Adversarial Patch for 
Object Detectors
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Yu-Chih-Tuan Hu, Bo-Han Kung, Daniel Stanley Tan, Jun-Cheng Chen, Kai-Lung Hua, Wen-Huang Cheng, 
"Naturally Physical Adversarial Patch for Object Detectors," IEEE/CVF International Conference on Computer 
Vision (ICCV), October 2021.



Takeways

• The evolution of the deepfake technologies is fast and requires 
more ethical consideration for it.

• Educate the public to less rely on the videos as the evidence.
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