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Introduction
• Modern software tools and advances in image processing 

and machine learning have made it very easy to manipulate 
or tamper digital images

• Examples of image manipulations include resampling, 
splicing, copy pasting, object removal, seam carving, to 
name a few

• Image Forensics deals with identifying images that have 
been manipulated

• Here, we will explore various local and holistic methods to 
detect tampered images
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Resampling in Digital Forgeries
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Upsample
30%

Splice into another 
image

Cut out 
object

The result will probably be 
saved as a JPEG (post-

compressed)
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Detection and Localization of 
Resampling Forgeries

5

Divide image into 
overlapping patches Extract a feature vector 

from each patch:

1. Linear predictor residual
2. Radon transform projections
3. 1D FFT to detect periodic signal
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Detection and Localization of 
Resampling Forgeries

6

Extract a feature 
vector from each 

patch

To each feature vector, 
apply machine learning 

classifiers to characterize 
any resampling:

- rotation clockwise?
- counterclockwise?
- upsampling?
- downsampling?

Use fully-connected CRF 
to enhance unary 

potentials from each 
classifier.

Each color represents a 
different resampling 
classifier's output.



Detection and Localization of 
Resampling Forgeries

7

Extract manipulated region 
from resampling classifier 

map.
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Summary of Resampling Detection Pipeline

• Paper: 
• Bunk, Jason, Jawadul H. Bappy, Tajuddin Manhar Mohammed, 

Lakshmanan Nataraj, Arjuna Flenner, B. S. Manjunath, 
Shivkumar Chandrasekaran, Amit K. Roy-Chowdhury, and 
Lawrence Peterson. "Detection and Localization of Image 
Forgeries Using Resampling Features and Deep Learning." In 
CVPR Workshops. 2017.

8December 7th, 2021



Visual Examples

9
Tampered images Ground Truth Predictions Estimated Masks
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Top Score in NC 2017 Evaluations
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Source: https://www.nist.gov/system/files/documents/2017/07/31/nist2017mediaforensicsworkshop_20170726.pdf
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Seam Carving and Seam Insertion
• Seam Carving and Seam Insertion are Content-aware image resizing methods 

which resize an image in a non-uniform way by preserving “important” content 
in an image

• A vertical/horizontal seam is a path of 8-connected pixels which traverses the 
image vertically/horizontally

• For seam carving, an image is reduced in size by deletion of seams whereas for 
seam insertion, two pixels are introduced for every deleted seam

• The path is obtained as the solution to an energy function related optimization 
problem - the optimal choice of seams maintains the image quality

• Since the image content and/or its dimensions are changed, we treat the seam 
carved/inserted image as a tampered image
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Seam Carving and Insertion

Input Seam Carving Seam Insertion 

b1 = (a+b)/2
b2 = (b+c)/2
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Seam Carving for Content-Aware 
Image Resizing

Source: https://www.faculty.idc.ac.il/arik/SCWeb/imret/
Avidan, Shai, and Ariel Shamir. "Seam carving for content-aware image resizing." ACM SIGGRAPH 2007 papers. 2007. 10-es.
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Steps involved in Seam Carving

Original
Image

Original Image with
Seams overlaid

Seam Carved
Image

Mask
Image

after 100 
seams 

removed
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Seam Carving Detection and 
Localization

• Step 1: Detect Seam 
Carved Image patches
• Create a dataset of 

seam carved patches 
and non-seam carved 
patches (64x64)

• Train a CNN to identify 
seam carved patches 
(CNN1)

• Output: a score in the 
range 0-1 whether the 
patch has been seam 
carved (1) or not (0)

Seam Carved Patches Non-Seam Carved Patches
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Seam Carving Detection and 
Localization

• Step 2: Detect Seam Carved Images
• Divide an image into overlapping patches  (64x64)

• For every patch, compute the prediction score if it has been 
seam carved or not (1.0 – seam carved, 0.0 – not seam 
carved)

• Obtain a heatmap which lights up in seam carved areas

• Compute heatmaps for seam carved and non-seam carved 
images

• With heatmaps as input, train a CNN to detect seam carved 
images (CNN2)
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Two-Stage Approach

18

Stage 1 – Patch Level Detection

Train a patch detector to detect if a patch is seam 
carved or not and generate a heatmap

Stage 2 – Image Level Detection

Train an image level detector to detect if the 
image has been seam carved or not
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Results
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No seam carving
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Results
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Seam carving
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Analyzing the heatmaps

21

Seam carved image Iterative mask Detected Heatmap

December 7th, 2021



Results
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Results on 
Seam Carved Images

Results on 
Non-Seam Carved Images
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Object removal - Explainability

23

Original image Object marked for removal Object removed Detected Heatmap
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Object removal - Explainability
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Original image Object marked for removal Object removed Detected Heatmap
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Object removal (distortions) -
Explainability
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Original image Object marked for removal Object removed Detected Heatmap
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Object removal and preservation -
Explainability
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Original image Object marked for removal Object removed Detected Heatmap
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Heatmaps for original images
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Non seam
carved images

Heatmaps
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Introduction to GANs and DeepFake

• Fake news and fake media are making headlines everyday

• Recent advances in Machine Learning (ML) and Artificial 
Intelligence (AI) have made it very easy to synthesize digital 
manipulations in images and videos

• Developments such as Generative Adversarial Networks 
(GANs) and DeepFakes have brought in newer attack 
avenues
• computer generated (CG) faces, augmenting faces with CG 

attributes/expressions, seamless transfer of texture between 
images
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Introduction to GANs and DeepFake

31
Source: https://indiaai.gov.in/article/news-information-and-politics-in-the-age-of-deepfakes
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GAN based Manipulation of Facial 
Attributes/Expressions 

32

StarGAN - Choi, Yunjey, et al. "Stargan: Unified generative adversarial networks for multi-domain image-to-image translation." 
IEEE Conference on Computer Vision and Pattern Recognition (2017)
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GAN based Image-Image Translation 
using CycleGAN
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CycleGAN – Zhu, Jun-Yan, et al. "Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks.“
IEEE International Conference on Computer Vision (2017)
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AI generated Faces using ProGAN

34

Karras, Tero, et al. "Progressive growing of gans for improved quality, stability, and variation." arXiv preprint 
arXiv:1710.10196 (2017).
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AI Generated Natural Scenes using 
GauGAN/SPADE

35

Park, Taesung, et al. "Semantic image synthesis with spatially-adaptive normalization." Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition. 2019.
https://nvlabs.github.io/SPADE/
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Generating High Quality Faces using 
StyleGAN/StyleGAN2

36

Karras, Tero, Samuli Laine, and Timo Aila. "A style-based generator 
architecture for generative adversarial networks." Proceedings of the 
IEEE conference on computer vision and pattern recognition. 2019.
https://github.com/NVlabs/stylegan

Karras, Tero, et al. "Analyzing and improving the image quality of 
stylegan." Proceedings of the IEEE/CVF Conference on Computer Vision 
and Pattern Recognition. 2020. https://github.com/NVlabs/stylegan2
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Deepfakes and FaceSwaps

37

https://spectrum.ieee.org/tech-talk/artificial-intelligence/machine-
learning/facebook-ai-launches-its-deepfake-detection-challenge

https://www.businessinsider.com/deepfake-tech-create-fictitious-
faces-cats-airbnb-listings-2019-2
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Deepfakes and FaceSwaps
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https://medium.com/@jsoverson/from-zero-to-deepfake-310551e59aa3

https://mashable.com/article/elon-musk-the-rock-photoshop-memes
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Real Images and AI Generated Images

39

Real Images

AI Images
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Detecting GAN Generated Images
• Though AI generated images are difficult for humans to detect, 

the pixel level statistics are altered

• Hence, features based on natural image statistics or steganalysis
can be effective in detection

• One such feature is Pixel Co-occurrence Matrix
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Example of a Pixel Co-Occurrence Matrix

41

Source: https://vision.ece.ucsb.edu/sites/default/files/publications/05SPIEKen.pdf
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• Past methods computed hand-crafted features on Co-
occurrence Matrices and then passed them through a 
machine learning classifier

• Here we pass the  Co-occurrence matrices (computed on 
color channels) through a Convolutional Neural Network 
(CNN) framework and let the network extract the features 
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Co-occurrence Matrix and Deep Learning

43

Input 
Image

Co-occurrence 
matrices

Tampered?

Deep
Learning

Convolutional + Max Pooling layers Fully Connected layers
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Preliminary Results

44

CycleGAN
(8,188 images)

StarGAN
(19,990 images)

Training Dataset Testing Dataset Accuracy

CycleGAN StarGAN 99.49

StarGAN CycleGAN 93.42

• Dataset
• CycleGAN

• StarGAN

• Experiment 1
• 50% training

• 25% validation/testing

• CycleGAN Accuracy = 99.71% 

• StarGAN Accuracy = 99.37

• Experiment 2
• Generalizability

• Train on one and test on other

Choi, Yunjey, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and Jaegul Choo. "Stargan: Unified generative adversarial networks for multi-domain image-to-image translation." 
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8789-8797. 2018.
CycleGAN – Zhu, Jun-Yan, et al. "Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks.“
IEEE International Conference on Computer Vision (2017)
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Training Accuracy and Loss
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CycleGAN

StarGAN
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Benchmark Test on CycleGAN
• Benchmark Experiment

• Different categories of 
CycleGAN dataset 

• Leave-one-category-out 
test

46

Method Average 
Accuracy

Steganalysis features1 94.40

Cozzalino20171 95.07

XceptionNet1 94.49

Nataraj20192 97.84

1Marra, F., Gragnaniello, D., Cozzolino, D., & Verdoliva, L. (2018, April). Detection of gan-generated fake images over social networks.
In 2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR) (pp. 384-389). IEEE.

2Nataraj, L., Mohammed, T. M., Manjunath, B. S., Chandrasekaran, S., Flenner, A., Bappy, J. H., & Roy-Chowdhury, A. K. (2019). Detecting
GAN generated fake images using co-occurrence matrices. Electronic Imaging, 2019(5), 532-1.
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Unified Framework for Detection, 
Attribution and Localization

• Detection
• Is an image GAN generated or not?

• Attribution
• Which GAN is it coming from?

• Localization 
• Which part of the image is GAN generated?

47December 7th, 2021
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Co-Occurrence Matrix for GAN Detection
• Though GANs produce images that are 

difficult for humans to detect, the pixel level 
statistics are altered

• Features based on natural image statistics or 
steganalysis can be effective in detection

• One such feature is Pixel Co-occurrence 
Matrix

• Use combination co-occurrence matrix and 
deep neural networks for Detection, 
Attribution and Localization                                                  
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Framework for Detection, Attribution 
and Localization
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Datasets – Large Scale Evaluation
• One of the largest evaluations on 2.6+ Million Images

• 1.6M+ non-GAN images

• 1M+ GAN images

• Datasets
• ProGAN

• StarGAN

• CycleGAN

• StyleGAN

• SPADE/GauGAN

• StyleGAN2 (testing)
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Detection Experiments

• Experimental Setup
• 90% training, 5% validation and 5% testing

• XceptionNet

• Adam optimizer and cross-entropy loss. 

• Batch size of 64 

• Results
• Accuracy = 99.16%
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Comparison with State of the Art
• Benchmark Experiment

• Different categories of 
CycleGAN dataset 

• Leave-one-category-out 
test

52

Method Average 
Accuracy

Steganalysis features1 94.40

Cozzalino20171 95.07

XceptionNet1 94.49

Nataraj20192 97.84

Zhang20193 97.20

Proposed Method 98.17

1Marra, F., Gragnaniello, D., Cozzolino, D., & Verdoliva, L. (2018, April). Detection of gan-generated fake images over social networks.
In 2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR) (pp. 384-389). IEEE.

2Nataraj, L., Mohammed, T. M., Manjunath, B. S., Chandrasekaran, S., Flenner, A., Bappy, J. H., & Roy-Chowdhury, A. K. (2019). Detecting
GAN generated fake images using co-occurrence matrices. Electronic Imaging, 2019(5), 532-1.

3Zhang, X., Karaman, S., & Chang, S. F. (2019). Detecting and simulating artifacts in gan fake images. arXiv preprint arXiv:1907.06515.
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Which GANs are easily detectable?
• Leave-one-GAN-out setting

• Images patches from 4 GANs for Training, 1 GAN for 
Testing

• Images from which GANs need to be used for 
training

53

GAN Testing 
Accuracy

StarGAN 84.90

CycleGAN 74.11

ProGAN 67.68

SPADE/GauGAN 98.74

StyleGAN 82.65
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Visualization using t-SNE

54

• Under the Leave-one-
GAN-out setting, 1,000 
random images are 
considered

• t-SNE algorithm on the 
outputs of last layer of 
CNN 

• StarGAN, 
Spade/GauGAN and 
StyleGAN – more 
separable

• CycleGAN, ProGAN –
less separable
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Results on StyleGAN2
• StyleGAN2 – more challenging and 

realistic than StyleGAN

• Without Fine-tuning
• Randomly chose 100,000 StyleGAN2 

images
• Accuracy = 94.64%

• With Fine-tuning
• 100,000 non-GAN images from different 

datasets
• 100,000 StyleGAN2 images
• 40% training, 10% validation, 50% testing
• Accuracy = 99.72%
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Source: https://github.com/NVlabs/stylegan2
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GAN Attribution

• Given a test image, which GAN does it belong to?

• 6 class classification problem: 
• Non-GAN, StarGAN, CycleGAN, ProGAN, Spade/GauGAN

and StyleGAN

• Dataset Distribution

56

Dataset Training Validation Testing

Non-GAN 1,612,202 42,382 42,397

StarGAN 28,062 738 711

CycleGAN 17,265 439 439

ProGAN 70,286 1,833 1,881

SPADE/GauGAN 138,075 3,717 3,704

StyleGAN 766,045 20,220 20,158
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GAN Attribution – Confusion Matrix

57

GT/Predicted

Non-GAN StarGAN CycleGAN ProGAN SPADE/
GauGAN

StyleGAN

Non-GAN 97.5 0.0 0.0 1.6 0.2 0.6

StarGAN 0.0 97.6 1.4 0.0 1.0 0.0

CycleGAN 0.0 0.0 96.4 0.0 3.6 0.0

ProGAN 0.0 0.0 0.0 100.0 0.0 0.0

SPADE/GauGAN 0.1 0.0 1.9 0.0 97.5 0.5

StyleGAN 0.7 0.0 2.2 0.0 6.8 90.2

Overall Classification Accuracy = 96.54%
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Visualization using t-SNE algorithm
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Visualization using t-SNE algorithm 
per GAN class
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GAN Localization

• Localize which part of an image has been generated 
by GAN

• Training on image patches

• Divide an image into overlapping patches
• Patch size: 128x128, Stride: 8

• Xception network used for training
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Localization Results

61

Results on Real Images Results on GAN Images
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Summary

• Presented a unified framework for Detection, Attribution 
and Localization of GAN generated images

• Based on pixel co-occurrence matrix that captures pixel 
level statistics

• One of the largest known evaluations on 2.6M+ images

• Achieves high accuracy and generalizable
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Extension to Image Manipulation 
Detection
• Compute Co-occurrence Matrices on Authentic images and 

Tampered Images and pass them to a Deep Learning classifier

• Use Media Forensics Challenge (MFC) Development (Dev) 
Datasets for Training and Evaluation (Eval) datasets for Testing

• Prior MFC Evaluation datasets are later added to the Dev datasets 
and models are re-trained

• Consistent high scores in MFC evaluations
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Top score in MFC Eval 2020
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Source: https://mig.nist.gov/MFC/Web/PIMeeting2020/NIST_MFC20_PIMeeting_All_Final_formated.pdf
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Results on Selective Manipulation Types
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Consistency in Different Evaluations

Source: https://mig.nist.gov/MFC/Web/PIMeeting2020/NIST_MFC20_PIMeeting_All_Final_formated.pdf
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Thank You

• Questions?
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