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Forensic Algorithms

• Deep learning has enabled dramatic 
advances in forensic algorithms

• Determine Authenticity
• Detect fake & synthetic content
• Detect manipulation and editing

• Identify Source
• Camera
• Distribution channel
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Forensic Neural Networks

• Neural networks learn 
models of forensic traces 
directly from data

• Dramatically reduces 
design time

• Improves forensic 
accuracy
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Anti-Forensics

• Intelligent attacker will use anti-forensic 
countermeasures

• Remove traces left by editing and falsification

• Falsify traces associated with source

• Difficult to attack neural networks using classical 
anti-forensic approaches
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Deep Learning for Anti-Forensics

• Deep learning enables new anti-forensic threats

• Learned models of forensic traces can be used against forensic 
algorithms

• Create synthetic forensic traces using generative adversarial networks
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Anti-Forensic Goals & Approaches

• Attack goals/requirements
1) Fool forensic algorithm
2) Fool human – visually convincing
3) Don’t undo intentional manipulations

• Attack approaches
• Remove/synthesize fake forensic traces

• Classical approach 
• GAN-based attacks

• Exploit classifier vulnerabilities
• Adversarial examples
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Fooling Forensic Algorithms

• Make forensic algorithm “useless”
• Untargeted attacks
• Reduce algorithm’s performance to random guess
• Not necessary to produce wrong output all of the time

• Produce convincingly wrong decisions
• Targeted attacks
• Make forensic algorithm produce wrong output with high confidence
• Harder to accomplish
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Generative Adversarial Networks

• GANs are used to create synthetic data

• Two main components:
• Generator – creates synthetic data
• Discriminator – detects synthetic data

• Learn through adversarial training

Generator

Discriminator
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GAN-Generated Synthetic Data
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GAN-Based Anti-Forensics
• Idea: Use GANs to generate synthetic forensic traces

• Attack workflow
1. Adversarially train anti-forensic generator
2. Save only generator
3. Create attacked image by passing through pre-trained generator

• Generator is fully convolutional neural network
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GAN-Based Anti-Forensics
• Anti-forensic generator  

• Synthesizes targeted forensic traces
• Does not perceptually alter content

• Deploy attack by passing image through pre-trained generator

• Generator does not need to be re-trained for each image!
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• Modify adversarial training process for anti-forensics

Adversarial Training

• Generator 
• Input – Image to attack
• Output – Image with target synthetic traces
• Loss function

• Forensic Classifier (pre-trained)

• Discriminator
• May not be needed

Generator

Discriminator

Forensic Classifier 
(CNN)

Perceptual Loss
(Distortion Penalty)

Classification Loss
(Fools Forensic CNN)

Adversarial Loss
(Fools Discriminator)
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Example: Camera Model ID Falsification

• Goal: Falsify image’s source camera model

• Anti-forensic generator creates fake traces from target camera model
• Input - Image from camera model A, Target camera model B
• Output - Image that classifies as originating from camera model B

Attack Camera Model 
Identification Algorithm

Camera Model 
Identification Algorithm

Camera 
Model A

Camera 
Model BCamera 

Model A
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Generator

• Apply “software” CFA to image
• Retains 1/3 of original pixels

• Use generator to “re-demosaic” image and falsify forensic traces

• Loss function 
L = α Mean Absolute Distortion + β Adversarial Loss + γ Camera Misclassification Loss
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Camera Model Falsification Results
• Fools classifier with 98.5% likelihood

• Works even when the true source is not used to train the generator

• Human eye can’t detect changes
• PSNR > 45 dB
• SSIM > 0.98
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Source Camera Model Falsification Results
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Example: Removing Manipulation Traces

• Attack can be adapted to remove 
multiple manipulation traces 

• Slightly different generator
• No synthetic CFA

• Strong results when attacker has 
full knowledge

• New problem related to class 
definitions arises
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Example: Removing Manipulation Traces
• Attack can be adapted to remove 

multiple manipulation traces
• Slightly different generator

• Strong results when attacker has 
full knowledge

• New problem related to class 
definitions arises
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Class Definition Problem
• Forensic CNNs can use different class definitions

• Detectors, Classifiers, and Parameterizers

• Attacks don’t transfer well between class definitions!
• Observed similar results for adversarial examples
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Attacker Knowledge Level

• Amount of information available to attacker has strong effect on 
attack design & feasibility

• Three knowledge scenarios
• White-Box (Perfect Knowledge)
• Black-Box (Limited Knowledge)
• Zero Knowledge
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White Box Attack

• Attacker has full knowledge of detection algorithm
• Access to: Full algorithm details, Code/software implementation, Pre-trained 

detector, Detector training data

• Can directly train attack against detector

• Important Info:
• Well studied in literature
• Best case attacker, worst case for detector
• Least realistic scenario
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Black Box Attack
• Attacker doesn’t have full access to detector

• Can’t see: Full algorithm details, code, possibly training data

• Attacker has black box access to detector
• Can query input/output relationship
• Provide images to detector and observe output
• Leverage this information to build an attack

• Important Info
• Studied in literature (research is ongoing)
• More challenging for attacker, but still feasible
• More realistic scenario
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Making Black Box Attacks

• Query victim forensic neural network 
and observes output

• Train substitute network to reproduce 
the same decisions 

• Train attack against substitute network

• Deploy trained attack against victim 
forensic neural network
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Example: Black Box Camera Model ID Attack

• Use generic substitute architecture (e.g. DenseNet)

• Maintains high attack success rate and visual quality
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Zero Knowledge Attack
• Attacker only knows that forensic algorithm exists

• Can’t see: Full algorithm details, code, possibly training data, software 
implementation

• Can’t query algorithm like a black box

• Attacker relies entirely on transferability
• Attack designed against stand-in algorithm/neural network
• Hope that attack also works against unseen network

• Important Info
• Least studied
• Most realistic scenario
• Most challenging for attacker
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Achieving Transferability
• Attacker creates their own set of 

“surrogate” classifiers

• Train generator to fool ensemble of 
surrogate classifiers

• Generator synthesizes traces in 
intersection of surrogate decision regions 

• Unseen detector likely has overlapping 
decision region
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Example: Fooling Synthetic Image Detectors
• Train anti-forensic generator to make GAN-generated images appear 

“real”

• White box performance
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Example: Fooling Synthetic Image Detectors
• Train using ensemble of surrogate forensic CNNs

• Zero knowledge performance

• Significant transferability!
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Threat Evolution Over Time

New Threat
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Created
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Observe Public 
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Time

Zero Knowledge 
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DARPA Hackathon 2 Anti-Forensic Challenge

Challenge - Detect GAN-generated images under anti-forensic attack

• Round 1: Drexel launches zero knowledge attacks

• Round 2: Drexel launches black box attack
• Teams provide classifier outputs for ~ 2,000 query images

• Round 3: Teams deploy defensive measures
• Drexel provides ~5,000 training examples of attacked images
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DARPA Hackathon 2 Anti-Forensic Challenge

• Adversarial Examples
• Carlini Wagner (CW)
• Projected Gradient Descent (PGD)
• Fast Gradient Sign Method (FGSM)

• Drexel’s GAN-Based Anti-Forensic attack
• Use adversarial generator to create synthetic “real” forensic traces
• arXiv version (attack has improved some beyond this):

Making GAN-Generated Images Difficult To Spot: A New Attack Against 
Synthetic Image Detectors
https://arxiv.org/abs/2104.12069
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Sample Results - Team 1

Drexel Attack, PD at PFA=0.1: 0.448 Drexel Attack, PD at PFA =0.1:  0.1244 PGD Attack, PD at PFA =0.1:  0.996
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Sample Results - Team 2

Drexel Attack, PD at PFA=0.1:  0.5816 Drexel Attack, PD at PFA =0.1:  0.439 PGD Attack, PD at PFA =0.1:  0.928
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Summary
• Anti-forensic attacks can be designed to fool forensic neural networks

• GANs can be used to synthesize realistic forensic traces

• GAN-based attacks can 
• Falsify an image’s source
• Hide traces of editing
• Disguise synthetic images

• Transferable attacks can be achieved through special training

• Further research needed to create defenses
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