Anti Forensic Attacks Using Generative Adversarial Networks: A New Threat

Matthew C. Stamm

Multimedia & Information Security Lab Drexel University

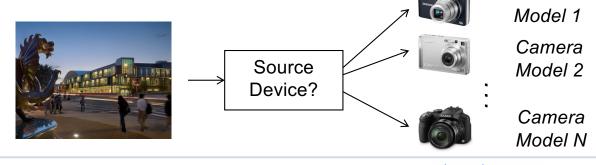
mstamm@drexel.edu

Forensic Algorithms

- Deep learning has enabled dramatic advances in forensic algorithms
- Determine Authenticity
 - Detect fake & synthetic content
 - Detect manipulation and editing



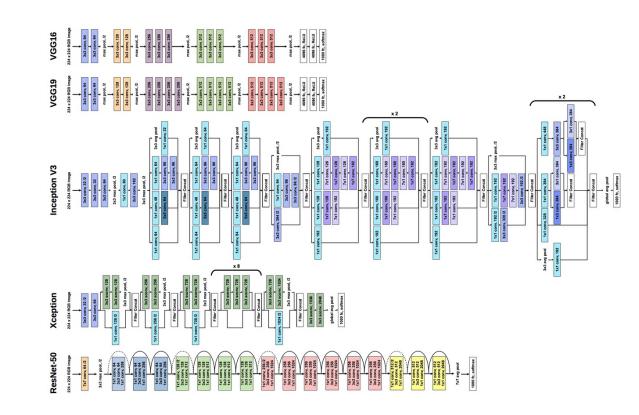
- Identify Source
 - Camera
 - Distribution channel



Camera

Forensic Neural Networks

- Neural networks learn models of forensic traces directly from data
- Dramatically reduces design time
- Improves forensic accuracy



Anti-Forensics

- Intelligent attacker will use anti-forensic countermeasures
- Remove traces left by editing and falsification
- Falsify traces associated with source
- Difficult to attack neural networks using classical anti-forensic approaches

Deep Learning for Anti-Forensics

- Deep learning enables new anti-forensic threats
- Learned models of forensic traces can be used against forensic algorithms
- Create synthetic forensic traces using *generative adversarial networks*

Anti-Forensic Goals & Approaches

- Attack goals/requirements
 - 1) Fool forensic algorithm
 - 2) Fool human visually convincing
 - 3) Don't undo intentional manipulations
- Attack approaches
 - Remove/synthesize fake forensic traces
 - Classical approach
 - GAN-based attacks
 - Exploit classifier vulnerabilities
 - Adversarial examples

Fooling Forensic Algorithms

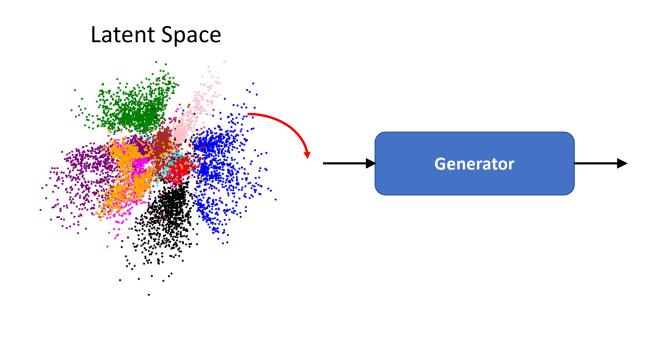
- Make forensic algorithm "useless"
 - Untargeted attacks
 - Reduce algorithm's performance to random guess
 - Not necessary to produce wrong output all of the time
- Produce convincingly wrong decisions
 - Targeted attacks
 - Make forensic algorithm produce wrong output with high confidence
 - Harder to accomplish

Generative Adversarial Networks

• GANs are used to create synthetic data

- Two main components:
 - Generator creates synthetic data
 - Discriminator detects synthetic data
- Learn through adversarial training

GAN-Generated Synthetic Data



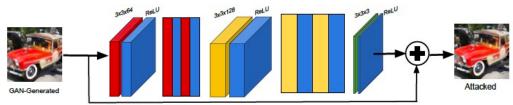
Synthetic Data



Taken from thispersondoesnotexist.com

GAN-Based Anti-Forensics

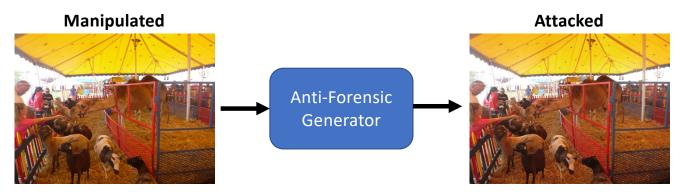
- Idea: Use GANs to generate synthetic forensic traces
- Attack workflow
 - 1. Adversarially train anti-forensic generator
 - 2. Save only generator
 - 3. Create attacked image by passing through pre-trained generator
- Generator is fully convolutional neural network



Chen et al. "MISLGAN: An anti-forensic camera model falsification framework using a generative adversarial network." IEEE ICIP (2018)

GAN-Based Anti-Forensics

- Anti-forensic generator
 - Synthesizes targeted forensic traces
 - Does not perceptually alter content
- Deploy attack by passing image through pre-trained generator



• Generator does not need to be re-trained for each image!

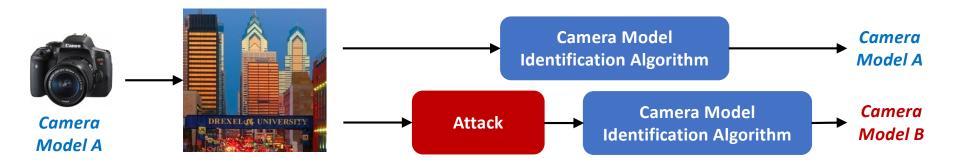
Adversarial Training

- Modify adversarial training process for anti-forensics • Generator • Input – Image to attack • Output – Image with target synthetic traces • Loss function $\mathcal{L}_G = \alpha \mathcal{L}_p + \beta \mathcal{L}_c + \gamma \mathcal{L}_a$ Perceptual Loss Classification Loss Adversarial Loss (Distortion Penalty) (Fools Forensic CNN) (Fools Discriminator) • Forensic Classifier (pre-trained)
- Discriminator
 - May not be needed

Chen et al. "Generative adversarial attacks against deeplearning-based camera model identification." IEEE TIFS (2019)

Example: Camera Model ID Falsification

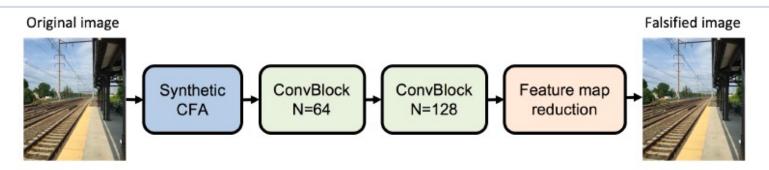
• Goal: Falsify image's source camera model



- Anti-forensic generator creates fake traces from target camera model
 - Input Image from camera model A, Target camera model B
 - Output Image that classifies as originating from camera model B

Chen et al. "Generative adversarial attacks against deeplearning-based camera model identification." IEEE TIFS (2019)

Generator



- Apply "software" CFA to image
 - Retains 1/3 of original pixels
- Use generator to "re-demosaic" image and falsify forensic traces
- Loss function

 $\mathcal{L} = \alpha$ Mean Absolute Distortion + β Adversarial Loss + γ Camera Misclassification Loss

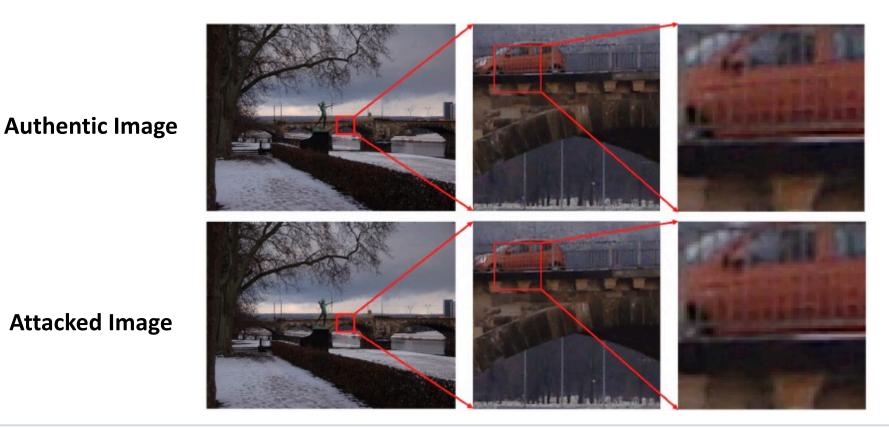
Camera Model Falsification Results

- Fools classifier with 98.5% likelihood
- Works even when the true source is *not* used to train the generator
- Human eye can't detect changes
 - PSNR > 45 dB
 - SSIM > 0.98

CNN Classifier		1	Bondi e	t al.[21]	8	I	Bayar & Stamm[22] Tuama et al.[23]						Avg.	
Target Model ID.		6	8	14	16	4	5	7	18	9	11	13	17	Arg.
d 1	STAR	95.70	98.35	97.14	89.19	94.51	98.08	98.00	90.91	92.97	96.36	97.62	97.37	95.52
Testing	SUAR	98.69	99.42	99.56	95.59	97.27	99.43	99.22	97.61	98.02	98.89	99.43	99.36	98.54
Testing	m-PSNR	45.44	45.01	45.09	44.34	45.96	46.28	46.44	44.91	45.38	46.04	45.84	46.96	45.64
	m-SSIM	0.987	0.988	0.986	0.981	0.988	0.989	0.989	0.983	0.989	0.988	0.988	0.990	0.987
	STAR	96.90	99.04	96.45	91.73	95.52	95.23	98.49	89.45	96.09	96.93	97.85	96.70	95.87
Unseen	m-PSNR	45.98	45.81	45.45	44.95	46.18	46.60	47.23	45.11	45.86	46.08	45.95	47.27	46.04
	m-SSIM	0.991	0.992	0.990	0.988	0.991	0.991	0.993	0.987	0.992	0.991	0.991	0.993	0.991

Chen et al. "Generative adversarial attacks against deeplearning-based camera model identification." IEEE TIFS (2019)

Source Camera Model Falsification Results



Example: Removing Manipulation Traces

- Attack can be adapted to remove multiple manipulation traces
- Slightly different generator • No synthetic CFA
- Strong results when attacker has full knowledge
- New problem related to class definitions arises

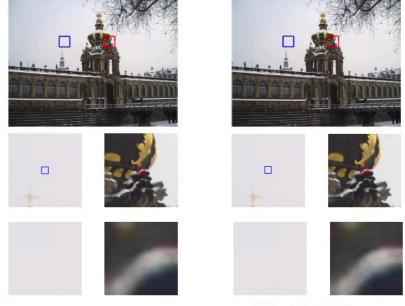
Zhao and Stamm "A Transferable Anti-Forensic Attack on Forensic CNNs Using A Generative Adversarial Network." arXiv (2021) https://arxiv.org/pdf/2101.09568.pdf

Example: Removing Manipulation Traces

- Attack can be adapted to remove multiple manipulation traces
 - Slightly different generator
- Strong results when attacker has full knowledge

CNN Architect.	ASR
MISLnet	1.00
TransferNet	1.00
PHNet	0.98
SRNet	0.93
DenseNet_BC	0.99
VGG-19	0.98
Avg.	0.98

New problem related to class definitions arises



Median filtered images

Anti-forensically attacked images

Zhao and Stamm "A Transferable Anti-Forensic Attack on Forensic CNNs Using A Generative Adversarial Network." arXiv (2021) https://arxiv.org/pdf/2101.09568.pdf

Class Definition Problem

- Forensic CNNs can use different class definitions
 - Detectors, Classifiers, and Parameterizers

2010/03/07/07/07/07/07/07/07	Successful Attack Rate								
CNN Architect.	Manip. Detector	Manip. Classifier	Manip. Parameterizer						
MISLnet	0.55	0.95	0.84						
TransferNet	0.81	0.84	0.98						
PHNet	0.90	0.97	0.94						
SRNet	0.88	0.90	0.82						
DenseNet	0.90	0.94	0.94						
VGG-19	0.71	0.97	0.96						
Average	0.79	0.93	0.91						

Baseline Results

Transfer Results

	Successful Attack Rate							
CNN Architect.	Manip. Classifier	Manip. Parameterizer						
MISLnet	0.004	0.045						
TransferNet	0.008	0.005						
PHNet	0.275	0.120						
SRNet	0.420	0.000						
DenseNet	0.005	0.010						
VGG-19	0.020	0.090						
Average	0.122	0.045						

- Attacks don't transfer well between class definitions!
 - Observed similar results for adversarial examples

Zhao and Stamm "The Effect Of Class Definitions On The Transferability Of Adversarial Attacks Against Forensic CNNs" Electronic Imaging (2020)

Attacker Knowledge Level

- Amount of information available to attacker has strong effect on attack design & feasibility
- Three knowledge scenarios
 - White-Box (Perfect Knowledge)
 - Black-Box (Limited Knowledge)
 - Zero Knowledge

White Box Attack

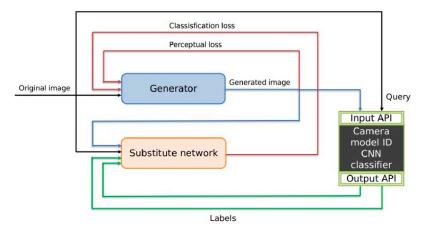
- Attacker has full knowledge of detection algorithm
 - Access to: Full algorithm details, Code/software implementation, Pre-trained detector, Detector training data
- Can directly train attack against detector
- Important Info:
 - Well studied in literature
 - Best case attacker, worst case for detector
 - Least realistic scenario

Black Box Attack

- Attacker doesn't have full access to detector
 - Can't see: Full algorithm details, code, possibly training data
- Attacker has *black box* access to detector
 - Can query input/output relationship
 - Provide images to detector and observe output
 - Leverage this information to build an attack
- Important Info
 - Studied in literature (research is ongoing)
 - More challenging for attacker, but still feasible
 - More realistic scenario

Making Black Box Attacks

- Query *victim* forensic neural network and observes output
- Train *substitute network* to reproduce the same decisions
- Train attack against substitute network
- Deploy trained attack against victim forensic neural network



Example: Black Box Camera Model ID Attack

- Use generic substitute architecture (e.g. DenseNet)
- Maintains high attack success rate and visual quality

CNN Classifier		0	Bondi e	t al.[21]		Bayar & Stamm[22]			Tuama et al.[23]				Avg.	
Target Model ID		1	4	8	10	7	14	16	17	2	3	6	15	Avg.
85	STAR	72.85	84.23	94.08	91.84	96.78	90.07	93.16	96.71	93.59	82.35	87.93	87.76	89.28
Testing	SUAR	94.89	94.72	98.07	97.92	98.61	97.34	97.47	98.69	98.55	95.86	96.80	97.88	97.23
Testing	m-PSNR	45.11	44.78	46.70	45.91	46.35	46.18	46.19	46.68	46.66	46.28	46.16	44.94	46.00
	m-SSIM	0.984	0.981	0.989	0.988	0.989	0.988	0.988	0.990	0.989	0.989	0.988	0.989	0.988
00	STAR	85.40	85.56	96.36	87.01	97.20	88.41	91.98	96.80	92.93	80.79	88.17	93.34	90.33
Unseen	m-PSNR	46.14	45.01	47.50	46.08	47.06	46.74	46.70	47.21	46.83	46.91	46.65	45.52	46.53
	m-SSIM	0.990	0.986	0.993	0.991	0.992	0.992	0.991	0.993	0.992	0.993	0.992	0.992	0.991

Chen et al. "Generative adversarial attacks against deeplearning-based camera model identification." IEEE TIFS (2019)

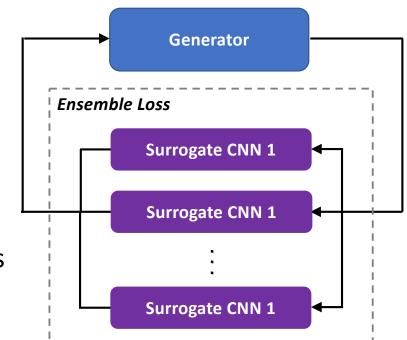
Zero Knowledge Attack

- Attacker only knows that forensic algorithm exists
 - Can't see: Full algorithm details, code, possibly training data, software implementation
 - Can't query algorithm like a black box
- Attacker relies entirely on transferability
 - Attack designed against stand-in algorithm/neural network
 - Hope that attack also works against unseen network
- Important Info
 - Least studied
 - Most realistic scenario
 - Most challenging for attacker

Achieving Transferability

- Attacker creates their own set of "surrogate" classifiers
- Train generator to fool ensemble of surrogate classifiers
- Generator synthesizes traces in intersection of surrogate decision regions
- Unseen detector likely has overlapping decision region

Zhao and Stamm "Making GAN-Generated Images Difficult To Spot: A New Attack Against Synthetic Image Detectors." arXiv (2021) https://arxiv.org/abs/2104.12069



Example: Fooling Synthetic Image Detectors

• Train anti-forensic generator to make GAN-generated images appear StyleGAN "real" StyleGAN2

> GAN Generated

CL CLN -

CININI

• White box performance

Zhao and Stamm "Making GAN-Generated Images Difficult To Spot: A New Attack Against Synthetic Image Detectors." arXiv (2021) https://arxiv.org/abs/2104.12069

CNNS	StarGAN-v2	StyleGAN	StyleGAN2	Avg.	M_PSNR	M_SSIM
Xception	1.0000	1.0000	1.0000	1.0000	45.52	0.9875
ResNet-50	0.7590	0.8770	0.8010	0.8123	35.97	0.9578
DenseNet	0.9385	0.9770	0.9970	0.9708	54.28	0.9997
MISLNet	0.9965	0.9905	0.9950	0.9940	51.28	0.9925
PHNet	1.0000	0.8497	0.9985	0.9494	41.85	0.9753
SRNet	0.8080	0.8855	0.9480	0.8805	50.97	0.9922
ImageCNN	0.9854	0.9935	0.8505	0.9431	53.64	0.9928
CamID CNN	0.9285	0.9120	0.9870	0.9425	58.10	0.9988
Avg.	0.9270	0.9357	0.9471	0.9366	48.95	0.9871

Stule CAN2

Ct.l.CAN

M DOND

.

M COIM

Example: Fooling Synthetic Image Detectors

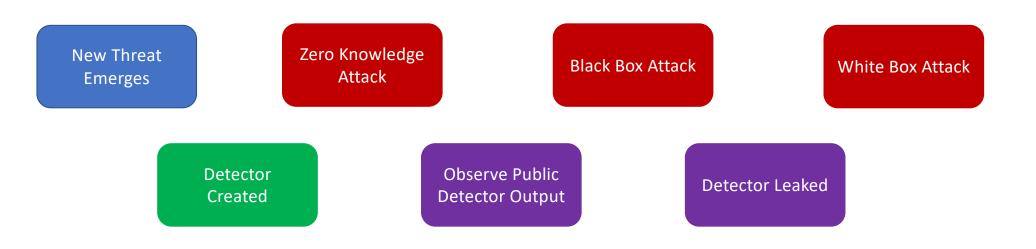
- Train using ensemble of surrogate forensic CNNs
- Zero knowledge performance

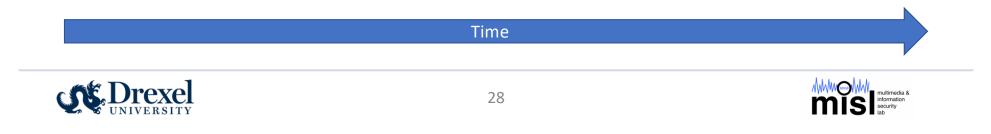
CNNs	StarGAN-v2	StyleGAN	StyleGAN2	Avg.	M_PSNR	M_SSIM
Xception	0.7855	0.9565	0.9900	0.9107	37.93	0.9766
ResNet-50	0.0695	0.3795	0.2815	0.2435	42.90	0.9765
DenseNet	0.8345	0.8325	0.9520	0.8730	38.79	0.9480
MISLNet	0.1250	0.2340	0.8350	0.3980	38.14	0.9742
PHNet	0.9925	0.7625	0.9935	0.9162	41.69	0.9704
SRNet	0.8495	0.8675	0.9465	0.8878	40.16	0.9709
Image CNN	0.8360	0.9595	0.8065	0.8673	41.27	0.9590
CamID CNN	0.7990	0.9480	0.9880	0.9117	42.77	0.9703
Avg.	0.6614	0.7425	0.8491	0.7510	40.46	0.9682

• Significant transferability!

Zhao and Stamm "Making GAN-Generated Images Difficult To Spot: A New Attack Against Synthetic Image Detectors." arXiv (2021) https://arxiv.org/abs/2104.12069

Threat Evolution Over Time





DARPA Hackathon 2 Anti-Forensic Challenge

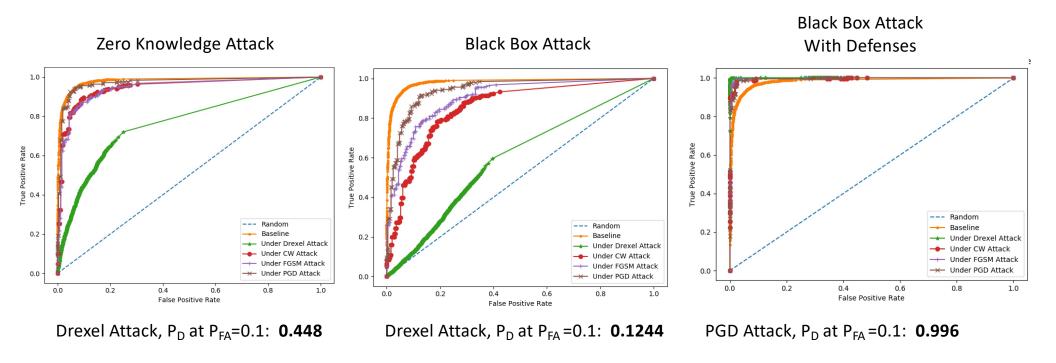
Challenge - Detect GAN-generated images under anti-forensic attack

- Round 1: Drexel launches zero knowledge attacks
- Round 2: Drexel launches black box attack
 - Teams provide classifier outputs for ~ 2,000 query images
- Round 3: Teams deploy defensive measures
 - Drexel provides ~5,000 training examples of attacked images

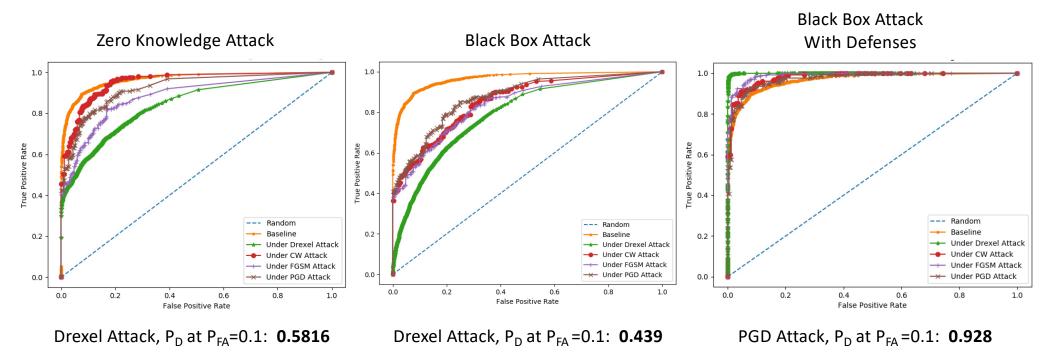
DARPA Hackathon 2 Anti-Forensic Challenge

- Adversarial Examples
 - Carlini Wagner (CW)
 - Projected Gradient Descent (PGD)
 - Fast Gradient Sign Method (FGSM)
- Drexel's GAN-Based Anti-Forensic attack
 - Use adversarial generator to create synthetic "real" forensic traces
 - arXiv version (attack has improved some beyond this): <u>Making GAN-Generated Images Difficult To Spot: A New Attack Against</u> <u>Synthetic Image Detectors</u> https://arxiv.org/abs/2104.12069

Sample Results - Team 1



Sample Results - Team 2



Summary

- Anti-forensic attacks can be designed to fool forensic neural networks
- GANs can be used to synthesize realistic forensic traces
- GAN-based attacks can
 - Falsify an image's source
 - Hide traces of editing
 - Disguise synthetic images
- Transferable attacks can be achieved through special training
- Further research needed to create defenses

Anti Forensic Attacks Using Generative Adversarial Networks: A New Threat

Matthew C. Stamm

Multimedia & Information Security Lab Drexel University

mstamm@drexel.edu

