

A Brief Ovewerview of Recent Development for Deepfake Detection and Other Countermeasures

Jun-Cheng Chen

pullpull@citi.sinica.edu.tw

Artificial Intelligence and Image Understanding Lab (AIIU) Research Center of Information Technology Innovation, Academia Sinica 2023/11/15

Recent Development of Generative AI^(1/2)

• ChatGPT:

Could you help me write a professional article about Forensics?

Sure, I'd be happy to help. Forensics is the application of scientific techniques and the methods to investigate criminal activity and answer legal questions. It is a crucial part of the criminal justice system, as it allows investigators to gather and analyze evidence in order to solve crimes and bring perpetrators to justice.

There are many different areas of forensics, including forensic anthropology, which involves the study of human remains to determine things like the cause of death and the identity of the victim; forensic pathology, which focuses on the examination of tissues and organs to determine the cause of death; and forensic psychology, which involves the study of the mind and behavior to help understand why a crime was committed.

Forensic scientists use a variety of tools and techniques to gather and analyze evidence. These can include DNA analysis, fingerprinting, and ballistics, as well as more specialized methods like trace evidence analysis, which looks at things like fibers, hairs, and paint to help link suspects to a crime scene.

P'

Sure, I'd be happy to help. It looks like you have a syntax error in your code. The issue is $rac{1}{2}$ that you are missing a semicolon at the end of the **`printf**' statement.

The correct code should look like this:

This will print out the numbers from 0 to 9, with each number on a new line.

To debug this code, you can use a technique called "stepping through" the code. This means going through the code line by line, checking the values of variables and making sure that each line is executing as expected.

P

Co OpenA

Image: Ait Castiff. Setty Company. Search Log al. Tychwell Research DALLE 3 understands significantly more nuance and detail than our previous systems, allowing you to easily translate your ideas into exceptionally accurate images. Image: Imag

https://openai.com/blog/chatgpt/

Recent Development of Generative AI^(2/2)

Cited from https://www.sequoiacap.com/article/generative-ai-a-creative-newworld/?fbclid=IwAR2GNyKNoEc_pv1TMjhUw2C7QIuyIZnvnv9HIW2kD080wqwXV3L3zL-14Sk

Text-to-Image

- Stable Diffusion
- civitai
 - >https://civitai.com/

Cases Sharing

Images generated by Midjourney v5 [,] It looks like a Facebook posts by someone.

Ref: FB 社團 IGC視覺藝創聯盟 (原 Midjourney AI 台灣社群)

Slide credit: Teddy Huang

Cases Sharing

In Taiwan, there are already some commercial applications.

Ref: 和泰集團 ESG • 與美好台灣同行

Slide credit: Teddy Huang

Safe, Secure, Trustworthy Artificial Intelligence

COMMENTARY PODCAST Unpacking President Biden's executive order on artificial intelligence

Nicol Turner Lee and Fred Dews November 3, 2023

https://www.brookings.edu/articles/unpacking-president-bidens-executive-order-on-artificial-intelligence/

Research Center for Information Technology Innovation, Academia Sinica

7

Motivation

At first glance, Keenan Ramsey might seem like a normal person on LinkedIn.

- Malicious Face Forgery Applications
 - Pornography
 - ➢ Politics

image source: https://technews.tw/2020/10/25/deepfake-deepnude/

https://www.youtube.com/watch?v=LFN9r70gk-Q

Source: Stanford Internet Observatory

Keenan Ramsey - 3rd

369 connections

Message

Growth Specialist at RingCentral | Messaging. Video. Phone

Together. | Everything you need in one beautiful App Burlingame, California, United States - Contact info

More

Source: Stanford Internet Observatory

https://www.npr.org/2022/03/27/1088140809/fake-linkedinprofiles?fbclid=lwAR3_ubq-9niHCYj10LeqlBogoMG9ExSMjz7azLhMlteu2D6-C-shsJhAKUE

Research Center for Information Technology Innovation, Academia Sinica

in

RingCentral

New York University

Motivation

Training Set

Caption: Living in the light with Ann Graham Lotz

Generated Image

Prompt: Ann Graham Lotz

* Carlini, Nicholas, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag, Florian Tramer, Borja Balle, Daphne Ippolito, and Eric Wallace. "Extracting training data from diffusion models." *arXiv preprint arXiv:2301.13188* (2023).

* Somepalli, Gowthami, Vasu Singla, Micah Goldblum, Jonas Geiping, and Tom Goldstein. "Diffusion art or digital forgery? investigating data replication in diffusion models." In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 6048-6058. 2023.

CheapFakes v.s. Deepfakes

Cheapfake
 Photoshop, ... Etc.

Model training

Image credit: Daniel Stanley Tan

Deepfake

Al generated Content

Image credit: [Shawn et al. 2023 GLAZE]

The Evolution of Content Editing

Slide Credit: Prof. Philip Isola, MIT

The Evolution of Content Editing

Latent $\mathbf{z} \in \mathcal{Z}$

Normalize

Fully-connected

PixelNorm

Conv 3×3

PixelNorm

Upsample

Conv 3×3

PixelNorm

Conv 3×3

PixelNorm

. . .

(a) Traditional

G(z)

 4×4

8×8

100 z - 1024 Project and reshape CONV 2 CONV 2 CONV 4 CO

> DCGAN [Radford et al. 2016]

LightStage [USC ICT 2015]

StyleGAN

2018

Synthesis network *q*

Const 4×4×512

AdaIN

AdaIN

Upsampl

Conv 3×3

AdaIN

Conv 3×3

AdaIN

(b) Style-based generator

Conv 3×3

Noise

Latent $\mathbf{z} \in \mathcal{Z}$

Normalize

FC

FC FC

FC

FC

FC

FC

FC

 $\mathbf{w} \in \mathcal{W}$

Mapping network f

Research Center for Information Technology Innovation, Academia Sinica

12

Denoising Diffusion Probabilistic Model

$$\begin{split} & \underbrace{\mathbf{x}_{T}}{\longrightarrow} \cdots \longrightarrow \underbrace{\mathbf{x}_{t}}{\underset{q(\mathbf{x}_{t}|\mathbf{x}_{t-1})}{\overset{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{\underset{q(\mathbf{x}_{t}|\mathbf{x}_{t-1})}{\overset{q(\mathbf{x}_{t}|\mathbf{x}_{t-1})}}} \underbrace{\mathbf{x}_{t-1}}{\longrightarrow} \cdots \longrightarrow \underbrace{\mathbf{x}_{0}}{\underset{q(\mathbf{x}_{t}|\mathbf{x}_{t-1})}{\overset{p(\mathbf{x}_{t-1})}{\underset{r=1}{\overset{p(\mathbf{x}_{t};\sqrt{1-\beta_{t}}\mathbf{x}_{t-1},\beta_{t}}\mathbf{I})}} \underbrace{\mathbf{x}_{t-1}}{\underset{q(\mathbf{x}_{t}|\mathbf{x}_{t-1})}{\overset{p(\mathbf{x}_{t-1})}{\underset{r=1}{\overset{p(\mathbf{x}_{t};\mathbf{0},\mathbf{I})}{\underset{r=1}{\overset{p(\mathbf{x}_{t-1};\mathbf{1}|\mathbf{x}_{t})}{\underset{r=1}{\overset{p(\mathbf{x}_{t-1};\mathbf{1}|\mathbf{x}_{t})}{\overset{p(\mathbf{x}_{t-1};\mathbf{1};\mathbf{1}|\mathbf{x}_{t})}}} \underbrace{\mathbf{x}_{t-1}}{\underset{r=1}{\overset{p(\mathbf{x}_{t}|\mathbf{x}_{t-1})}{\underset{r=1}{\overset{p(\mathbf{x}_{t}|\mathbf{x}_{t-1})}{\underset{r=1}{\overset{p(\mathbf{x}_{t}|\mathbf{x}_{t-1})}{\underset{r=1}{\overset{p(\mathbf{x}_{t}|\mathbf{x}_{t-1})}{\underset{r=1}{\overset{p(\mathbf{x}_{t}|\mathbf{x}_{t-1})}{\underset{r=1}{\overset{p(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{\underset{r=1}{\overset{r=1}{\overset{p(\mathbf{x}_{t}|\mathbf{x}_{t-1})}{\underset{r=1}{\overset{r=1}{\overset{p(\mathbf{x}_{t}|\mathbf{x}_{t-1})}{\underset{r=1}{\overset{r=1}$$

Diffusion model: 1. Better mode coverage/diversity

- 2. Higher quality samples
- 3. Slower sampling

Ho, Jonathan, Ajay Jain, and Pieter Abbeel. "Denoising diffusion probabilistic models." Advances in Neural Information Processing Systems 33 (2020): 6840-6851.

https://cvpr2022-tutorial-diffusion-models.github.io/

The Evolution of Content Editing

Faceswap is the leading free and Open Source multi-platform Deepfakes software.

Faceswap

DeepFaceLab the leading software for creating deepfakes

Midjourney

Video credit: Chris Ume and Miles Fisher

$DALL \cdot E 2 (DALL \cdot E 3)$ **From OpenAl**

ing of Salvador Dalí with a robotic half face

a shiba inu wearing a beret and black turtleneck

a close up of a handpalm with leaves growing from it

an espresso machine that makes coffee from human souls, artstation

a corgi's head depicted as an explosion of a nebula

a dolphin in an astronaut suit on saturn, artstation

a propaganda poster depicting a cat dressed as french emperor napoleon holding a piece of cheese

a teddy bear on a skateboard in times square

Ramesh et al. Hierarchical Text-Conditional Image Generation with CLIP Latents, OpenAI, 2022

Imagen **From Google**

Intricate origami of a fox and a unicorn in a snowy forest.

A chromeplated cat sculpture placed on a Persian rug. Android Mascot made from bamboo.

Three spheres made of glass falling into ocean. Water Vines in the shape of text 'Imagen' with flowers and A strawberry splashing in the coffee in a mug under is splashing. Sun is setting. butterflies bursting out of an old TV. the starry sky.

Saharia et al., Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding, Google, 2022

Stable Diffusion

Rombach, Robin, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. "High-resolution image synthesis with latent diffusion models." In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 10684-10695. 2022. https://stability.ai/blog/stable-diffusion-announcement, Stability AI, 2022

DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation

Ruiz, Nataniel, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman. "Dreambooth: Fine tuning text-toimage diffusion models for subject-driven generation." *arXiv preprint arXiv:2208.12242* (2022).

ControlNet

Zhang, Lvmin, and Maneesh Agrawala. "Adding conditional control to text-to-image diffusion models." *arXiv preprint arXiv:2302.05543* (2023).

Text-to-Video

Imagen Video (Google), Phenaki (Google), Make-a-Video (Meta)

A bunch of autumn leaves falling on a calm lake to form the text 'Imagen Video' Smooth

A clear wine glass with turquoise-colored waves inside it.

A giraffe underneath a microwave.

A panda taking a selfie

Video credit: https://imagen.research.google/video/

Ho, Jonathan, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P. Kingma et al. "Imagen video: High definition video generation with diffusion models." *arXiv preprint arXiv:2210.02303* (2022).

Villegas, Ruben, Mohammad Babaeizadeh, Pieter-Jan Kindermans, Hernan Moraldo, Han Zhang, Mohammad Taghi Saffar, Santiago Castro, Julius Kunze, and Dumitru Erhan. "Phenaki: Variable length video generation from open domain textual description." *arXiv preprint arXiv:2210.02399* (2022).

Singer, U., Polyak, A., Hayes, T., Yin, X., An, J., Zhang, S., Hu, Q., Yang, H., Ashual, O., Gafni, O. and Parikh, D., 2022. Make-a-video: Text-to-video generation without text-video data. *arXiv preprint arXiv:2209.14792*.

Challenges

- The evolution of the deepfake technology is ongoing and upgrading in a very fast speed.
- The technologies are widely accessible to the public and much easier to use than before.

Possible Countermeasures

- Passive Defense
 - Deepfake Detection
 - Digital Watermark
- Proactive Defense
 - Adversarial Attack

Common Deepfake Manipulation

Rossler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., & Nießner, M. (2019). Faceforensics++: Learning to detect manipulated facial images. In Proceedings of the IEEE International Conference on Computer Vision (pp. 1-11). Thies, Justus, Michael Zollhofer, Marc Stamminger, Christian Theobalt, and Matthias Nießner. "Face2face: Real-time face capture and reenactment of rgb videos." In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 2387-2395. 2016.

Deepfake Detection

• Sample visual cues for detection

Deepfake Detection

 Train a binary classifier to distinguish real images from fake ones.

Global Texture Enhancement for Fake Face Detection In the Wild

Testing set	Method	Original %	8x↓%	JPEG %	JPEG 8x↓	Blur %	Noise %	Avg.
StyleGAN	Co-detect	79.93 ± 1.34	71.80 ± 1.30	74.58 ± 3.25	71.25 ±1.18	71.39 ±1.42	54.09 ± 2.45	70.5
vs.	ResNet	96.73 ± 3.60	85.10 ± 6.22	96.68 ± 3.50	83.33 ± 5.95	79.48 ± 8.70	87.92 ± 6.16	88.20
CelebA-HQ	Gram-Net	$\textbf{99.10} \pm \textbf{1.36}$	$\textbf{95.84} \pm \textbf{1.98}$	$\textbf{99.05} \pm \textbf{1.37}$	92.39 ± 2.66	$\textbf{94.20} \pm \textbf{5.57}$	$\textbf{92.47} \pm \textbf{4.52}$	95.5
PGGAN	Co-detect	71.22 ± 3.76	62.02 ± 2.86	64.08 ± 1.93	61.24 ± 2.28	62.46 ± 3.31	49.96 ± 0.28	61.8
vs.	ResNet	93.74 ± 3.03	77.75 ± 4.82	89.35 ± 1.50	69.35 ± 3.25	78.06 ± 7.57	82.65 ± 2.37	81.8
CelebA-HQ	Gram-Net	98.54 ± 1.27	$\textbf{82.40} \pm \textbf{6.30}$	94.65 ± 3.28	$\textbf{79.77} \pm \textbf{6.13}$	$\textbf{91.96} \pm \textbf{4.78}$	$\textbf{88.29} \pm \textbf{3.44}$	89.2
PGGAN	Co-detect	91.14 ± 0.61	82.94 ± 1.03	86.00 ± 1.70	82.46 ± 1.06	84.24 ± 0.93	54.77 ± 2.42	80.20
vs.	ResNet	97.38 ± 0.52	90.87 ± 1.90	94.67 ± 1.15	89.93 ± 1.50	97.25 ± 0.87	66.60 ± 9.61	89.4
CelebA-HQ	Gram-Net	$\textbf{98.78} \pm \textbf{0.49}$	$\textbf{94.66} \pm \textbf{3.10}$	$\textbf{97.29} \pm \textbf{1.05}$	$\textbf{94.08} \pm \textbf{3.22}$	$\textbf{98.55} \pm \textbf{0.92}$	$\textbf{70.32} \pm \textbf{12.04}$	92.2
StyleGAN	Co-detect	57.30 ± 1.62	57.41 ± 0.85	52.90 ± 1.67	82.46 ± 1.06	57.41 ± 0.93	50.08 ± 0.10	51.4
vs.	ResNet	97.98 ± 1.90	87.91 ± 1.01	92.03 ± 4.14	82.23 ± 1.39	94.79 ± 1.32	$\textbf{60.89} \pm \textbf{7.24}$	85.9
CelebA-HQ	Gram-Net	$\textbf{98.55} \pm \textbf{0.89}$	$\textbf{91.57} \pm \textbf{2.95}$	$\textbf{94.28} \pm \textbf{3.67}$	$\textbf{83.64} \pm \textbf{3.43}$	$\textbf{97.05} \pm \textbf{1.04}$	60.07 ± 7.32	87.52
StyleGAN	Co-detect	69.73 ± 2.41	67.27 ± 1.68	67.48 ± 2.83	64.65 ± 1.67	64.55 ± 1.93	54.66 ± 3.97	64.74
VS.	ResNet	90.27 ± 3.05	70.99 ± 1.13	89.35 ± 3.42	67.96 ± 1.13	$\textbf{75.60} \pm \textbf{10.75}$	81.32 ± 5.06	81.50
FFHQ	Gram-Net	$\textbf{98.96} \pm \textbf{0.51}$	89.22 ± 4.44	$\textbf{98.69} \pm \textbf{0.81}$	$\textbf{87.86} \pm \textbf{3.42}$	70.99 ± 6.07	$\textbf{94.27} \pm \textbf{2.12}$	90.0
	Testing set StyleGAN vs. CelebA-HQ PGGAN vs. CelebA-HQ StyleGAN vs. CelebA-HQ StyleGAN vs. CelebA-HQ StyleGAN vs. FFHQ	Testing setMethodStyleGANCo-detectvs.ResNetCelebA-HQGram-NetPGGANCo-detectvs.ResNetCelebA-HQGram-NetPGGANCo-detectvs.ResNetCelebA-HQGram-NetStyleGANCo-detectvs.ResNetCelebA-HQGram-NetStyleGANCo-detectvs.ResNetCelebA-HQGram-NetStyleGANCo-detectvs.ResNetFFHQGram-Net	Testing set Method Original % StyleGAN Co-detect 79.93 ± 1.34 vs. ResNet 96.73 ± 3.60 CelebA-HQ Gram-Net 99.10 ± 1.36 PGGAN Co-detect 71.22 ± 3.76 vs. ResNet 93.74 ± 3.03 CelebA-HQ Gram-Net 98.54 ± 1.27 PGGAN Co-detect 91.14 ± 0.61 vs. ResNet 97.38 ± 0.52 CelebA-HQ Gram-Net 98.78 ± 0.49 StyleGAN Co-detect 97.38 ± 0.52 CelebA-HQ Gram-Net 98.78 ± 0.49 StyleGAN Co-detect 57.30 ± 1.62 vs. ResNet 97.98 ± 1.90 CelebA-HQ Gram-Net 98.55 ± 0.89 StyleGAN Co-detect 69.73 ± 2.41 vs. ResNet 90.27 ± 3.05 FFHQ Gram-Net 98.96 ± 0.51	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Testing setMethodOriginal % $8x \downarrow \%$ JPEG %JPEG $8x \downarrow$ StyleGANCo-detect 79.93 ± 1.34 71.80 ± 1.30 74.58 ± 3.25 71.25 ± 1.18 vs.ResNet 96.73 ± 3.60 85.10 ± 6.22 96.68 ± 3.50 83.33 ± 5.95 CelebA-HQGram-Net 99.10 ± 1.36 95.84 ± 1.98 99.05 ± 1.37 92.39 ± 2.66 PGGANCo-detect 71.22 ± 3.76 62.02 ± 2.86 64.08 ± 1.93 61.24 ± 2.28 vs.ResNet 93.74 ± 3.03 77.75 ± 4.82 89.35 ± 1.50 69.35 ± 3.25 CelebA-HQGram-Net 98.54 ± 1.27 82.40 ± 6.30 94.65 ± 3.28 79.77 ± 6.13 PGGANCo-detect 91.14 ± 0.61 82.94 ± 1.03 86.00 ± 1.70 82.46 ± 1.06 vs.ResNet 97.38 ± 0.52 90.87 ± 1.90 94.67 ± 1.15 89.93 ± 1.50 CelebA-HQGram-Net 98.78 ± 0.49 94.66 ± 3.10 97.29 ± 1.05 94.08 ± 3.22 StyleGANCo-detect 57.30 ± 1.62 57.41 ± 0.85 52.90 ± 1.67 82.46 ± 1.06 vs.ResNet 97.98 ± 1.90 87.91 ± 1.01 92.03 ± 4.14 82.23 ± 1.39 CelebA-HQGram-Net 98.55 ± 0.89 91.57 ± 2.95 94.28 ± 3.67 83.64 ± 3.43 StyleGANCo-detect 69.73 ± 2.41 67.27 ± 1.68 67.48 ± 2.83 64.65 ± 1.67 vs.ResNet 90.27 ± 3.05 70.99 ± 1.13 89.35 ± 3.42 67.96 ± 1.13 FFHQGram-Net 98.96 ± 0.51 89	Testing setMethodOriginal % $8x \downarrow \%$ JPEG %JPEG $8x \downarrow$ Blur %StyleGANCo-detect 79.93 ± 1.34 71.80 ± 1.30 74.58 ± 3.25 71.25 ± 1.18 71.39 ± 1.42 vs.ResNet 96.73 ± 3.60 85.10 ± 6.22 96.68 ± 3.50 83.33 ± 5.95 79.48 ± 8.70 CelebA-HQGram-Net 99.10 ± 1.36 95.84 ± 1.98 99.05 ± 1.37 92.39 ± 2.66 94.20 ± 5.57 PGGANCo-detect 71.22 ± 3.76 62.02 ± 2.86 64.08 ± 1.93 61.24 ± 2.28 62.46 ± 3.31 vs.ResNet 93.74 ± 3.03 77.75 ± 4.82 89.35 ± 1.50 69.35 ± 3.25 78.06 ± 7.57 CelebA-HQGram-Net 98.54 ± 1.27 82.40 ± 6.30 94.65 ± 3.28 79.77 ± 6.13 91.96 ± 4.78 PGGANCo-detect 91.14 ± 0.61 82.94 ± 1.03 86.00 ± 1.70 82.46 ± 1.06 84.24 ± 0.93 vs.ResNet 97.38 ± 0.52 90.87 ± 1.90 94.67 ± 1.15 89.93 ± 1.50 97.25 ± 0.87 CelebA-HQGram-Net 98.78 ± 0.49 94.66 ± 3.10 97.29 ± 1.05 94.08 ± 3.22 98.55 ± 0.92 StyleGANCo-detect 57.30 ± 1.62 57.41 ± 0.85 52.90 ± 1.67 82.46 ± 1.06 57.41 ± 0.93 vs.ResNet 97.38 ± 1.90 87.91 ± 1.01 92.03 ± 4.14 82.23 ± 1.39 94.79 ± 1.32 CelebA-HQGram-Net 98.55 ± 0.89 91.57 ± 2.95 94.28 ± 3.67 83.64 ± 3.43 97.05 ± 1.04 vs.ResNet 9	Testing setMethodOriginal % $8x \downarrow \%$ JPEG %JPEG $8x \downarrow$ Blur %Noise %StyleGANCo-detect 79.93 ± 1.34 71.80 ± 1.30 74.58 ± 3.25 71.25 ± 1.18 71.39 ± 1.42 54.09 ± 2.45 vs.ResNet 96.73 ± 3.60 85.10 ± 6.22 96.68 ± 3.50 83.33 ± 5.95 79.48 ± 8.70 87.92 ± 6.16 CelebA-HQGram-Net 99.10 ± 1.36 95.84 ± 1.98 99.05 ± 1.37 92.39 ± 2.66 94.20 ± 5.57 92.47 ± 4.52 PGGANCo-detect 71.22 ± 3.76 62.02 ± 2.86 64.08 ± 1.93 61.24 ± 2.28 62.46 ± 3.31 49.96 ± 0.28 vs.ResNet 93.74 ± 3.03 77.75 ± 4.82 89.35 ± 1.50 69.35 ± 3.25 78.06 ± 7.57 82.65 ± 2.37 CelebA-HQGram-Net 98.54 ± 1.27 82.40 ± 6.30 94.65 ± 3.28 79.77 ± 6.13 91.96 ± 4.78 88.29 ± 3.44 PGGANCo-detect 91.14 ± 0.61 82.94 ± 1.03 86.00 ± 1.70 82.46 ± 1.06 84.24 ± 0.93 54.77 ± 2.42 vs.ResNet 97.38 ± 0.52 90.87 ± 1.90 94.67 ± 1.15 89.93 ± 1.50 97.25 ± 0.87 66.60 ± 9.61 CelebA-HQGram-Net 98.78 ± 0.49 94.66 ± 3.10 97.29 ± 1.05 94.08 ± 3.22 98.55 ± 0.92 70.32 ± 12.04 StyleGANCo-detect 57.30 ± 1.62 57.41 ± 0.85 52.90 ± 1.67 82.46 ± 1.06 57.41 ± 0.93 50.08 ± 0.10 vs.ResNet 97.98 ± 1.90 87.91 ± 1.01 92.03 ± 4.14

$$G^{l} = (F_{i}^{lT}F_{j}^{l})_{n \times n} = \begin{bmatrix} F_{1}^{lT}F_{1}^{l} & \cdots & F_{1}^{lT}F_{n}^{l} \\ \vdots & \ddots & \\ F_{n}^{lT}F_{1}^{l} & \cdots & F_{n}^{lT}F_{n}^{l} \end{bmatrix}$$

[Liu et al. 2020]

What makes fake images detectable? Understanding properties that generalize

• Handling 2D Deepfakes (Patch-Forensics)

block 1 block 2 block 3 output

Chai, Lucy, David Bau, Ser-Nam Lim, and Phillip Isola. "What makes fake images detectable? understanding properties that generalize." In *European conference on computer vision*, pp. 103-120. Springer, Cham, 2020.

Improving the Efficiency and Robustness of Deepfakes Detection through Precise Geometric Features

Methods	Cor	ıfigura	tions	Testing Datasets			
wiethous	Size	Aug.	Training	UADFV	FF++	Celeb-DF	
Meso4 [1]	0.03 M	×	Unpub.	84.3	84.7	54.8	
FWA [18]	26 M		Unpub.	97.4	80.1	56.9	
DSP-FWA [18]	28 M		Unpub.	97.7	93.0	64.6	
Xception [25]	20.8 M	X	FF++	80.4	99.7	48.2	
Capsule [23]	15 M	×	FF++	61.3	96.6	57.5	
CNN+RNN [26]	24.3 M	×	FF++	70.9	98.3	61.5	
LRNet (ours)	0.18 M	×	FF++	98.5	99.9	56.9	

Sun, Zekun, Yujie Han, Zeyu Hua, Na Ruan, and Weijia Jia. "Improving the efficiency and robustness of deepfakes detection through precise geometric features." In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 3609-3618. 2021.

Face X-ray for More General Face Forgery Detection

Madal	Trainin	g set		Te	st set Al	JC	
Widdei	DF	BI	DF	F2F	FS	NT	FF++
Xception [36]	\checkmark	_	99.38	75.05	49.13	80.39	76.34
HRNet	\checkmark	_	99.26	68.25	39.15	71.39	69.51
Face V roy	\checkmark	_	99.17	94.14	75.34	93.85	90.62
Face A-lay	\checkmark	\checkmark	99.12	97.64	98.00	97.77	97.97
	F2F	BI	DF	F2F	FS	NT	FF++
Xception [36]	\checkmark	_	87.56	99.53	65.23	65.90	79.55
HRNet	\checkmark	_	83.64	99.50	56.60	61.26	74.71
Face V ray	\checkmark	_	98.52	99.06	72.69	91.49	93.41
	\checkmark	\checkmark	99.03	99.31	98.64	98.14	98.78
	FS	BI	DF	F2F	FS	NT	FF++
Xception [36]	\checkmark	_	70.12	61.70	99.36	68.71	74.91
HRNet	\checkmark	_	63.59	64.12	99.24	68.89	73.96
Face Y-ray	\checkmark	_	93.77	92.29	99.20	86.63	93.13
	\checkmark	\checkmark	99.10	98.16	99.09	96.66	98.25
	NT	BI	DF	F2F	FS	NT	FF++
Xception [36]	\checkmark	_	93.09	84.82	47.98	99.50	83.42
HRNet	\checkmark	_	94.05	87.26	64.10	98.61	86.01
Face Y-ray	\checkmark	_	99.14	98.43	70.56	98.93	91.76
	\checkmark	\checkmark	99.27	98.43	97.85	99.27	98.71
	FF++	BI	DF	F2F	FS	NT	FF++
Xception [36]	_	\checkmark	98.95	97.86	89.29	97.29	95.85
HRNet	—	\checkmark	99.11	97.42	83.15	98.17	94.46
Face X-ray	—	\checkmark	99.17	98.57	98.21	98.13	98.52

[Li et al. 2020]

More Self-Supervised Deepfake Detection Approaches

Self-Blended Image

Method	Input Type	Traini	ng Set	Test Set AUC (%)						
		Real	Fake	CDF	DFD	DFDC	DFDCP	FFIW		
DSP-FWA [41]	Frame	\checkmark	\checkmark	69.30	-	-	-	-		
Face X-ray + BI [39]	Frame	\checkmark		-	93.47	-	71.15	-		
Face X-ray + BI [39]	Frame	\checkmark	\checkmark	-	95.40	-	80.92	-		
LRL [13]	Frame	\checkmark	\checkmark	78.26	89.24	-	76.53	-		
FRDM [44]	Frame	\checkmark	\checkmark	79.4	91.9	-	79.7	-		
PCL + I2G [65]	Frame	\checkmark		<u>90.03</u>	99.07	67.52	74.37	-		
Two-branch [47]	Video	\checkmark	\checkmark	76.65	-	-	-	-		
DAM [67]	Video	\checkmark	\checkmark	75.3	-	-	72.8	-		
LipForensics [27]	Video	\checkmark	\checkmark	82.4	-	-	-	-		
FTCN [66]	Video	\checkmark	\checkmark	86.9	94.40*	<u>71.00</u> *	74.0	<u>74.47</u> *		
EFNB4 + SBIs (Ours)	Frame	\checkmark		93.18	<u>97.56</u>	72.42	86.15	84.83		

Shiohara, Kaede, and Toshihiko Yamasaki. "Detecting deepfakes with self-blended images." In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 18720-18729. 2022.

More Self-Supervised Deepfake Detection Approaches

Method	DF			F2F			FS			NT			Δυσ
Wiethou	DFDC	CelebDF	DF1.0	Avg.									
Xception [41]	0.654	0.681	0.617	0.708	0.598	0.745	0.708	0.601	0.605	0.646	0.625	0.838	0.669
Face X-ray [24]	0.609	0.554	0.668	0.633	0.684	0.766	0.646	0.697	0.795	0.613	0.703	0.866	0.686
F3Net [39]	0.682	0.664	0.658	0.679	0.654	0.761	0.679	0.636	0.651	0.672	0.689	0.932	0.696
RFM [47]	0.758	0.723	0.717	0.736	0.663	0.732	0.714	0.591	0.714	0.726	0.600	0.846	0.710
SRM [30]	0.679	0.650	0.720	0.687	0.693	0.775	0.671	0.643	0.771	0.656	0.651	0.936	0.711
Ours	0.772	0.730	0.742	0.787	0.781	0.786	0.742	0.800	0.695	0.741	0.759	0.889	0.769

Chen, Liang, Yong Zhang, Yibing Song, Lingqiao Liu, and Jue Wang. "Self-supervised learning of adversarial example: Towards good generalizations for deepfake detection." In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 18710-18719. 2022.

Video Consistency^(1/2)

• Temporal Inconsistency between frames

In Ictu Oculi: Exposing Al Generated Fake Face Videos by Detecting Eye Blinking, WIFS 2018

• Audio-visual inconsistency

Exploring Temporal Coherence for More General Video Face Forgery Detection, ICCV 2021

Video Consistency^(2/2)

More temporal inconsistency

Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection, CVPR 2021

Spatio-temporal inconsistency

exponentia EMA moving

average

Leveraging Real Talking Faces via Self-Supervision for Robust Forgery Detection. CVPR 2022

SELF-SUPERVISED AUDIO-VISUAL MUTUAL LEARNING FOR DEEPFAKE DETECTION (ICASSP 2023)

 Develop an effective audio-visual self-supervised pretraining-based feature extractor which can significantly improve the generalization of finetuned Deepfake detector for unseen Deepfakes.

ChangSung Sung, Jun-Cheng Chen, Chu-Song Chen, "Hearing and Seeing Abnormality: Self-supervised Audio-Visual Mutual Learning for Deepfake Detection," *EEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, 2023.

CNN-generated images are surprisingly easy to spot... for now

			Trainin	g setting	s		Individual test generators									Total		
Family	Name	Train	Input	No.	Aug	ments	Pro-	Style-	Big-	Cycle-	Star-	Gau-	CRN	IMLE	SITD	SAN	Deep-	mAP
			mpar	Class	Blur	JPEG	GAN	GAN	GAN	GAN	GAN	GAN	ciuv		5112	5.1.	Fake	
Thong	Cyc-Im	CycleGAN	RGB	-			84.3	65.7	55.1	100.	99.2	79.9	74.5	90.6	67.8	82.9	53.2	77.6
Zhang	Cyc-Spec	CycleGAN	Spec	-			51.4	52.7	79.6	100.	100.	70.8	64.7	71.3	92.2	78.5	44.5	73.2
[50]	Auto-Im	AutoGAN	RGB				73.8	60.1	46.1	99.9	100.	49.0	82.5	71.0	80.1	86.7	80.8	75.5
[20]	Auto-Spec	AutoGAN	Spec	-			75.6	68.6	84.9	100.	100.	61.0	80.8	75.3	89.9	66.1	39.0	76.5
	2-class	ProGAN	RGB	2	✓	1	98.8	78.3	66.4	88.7	87.3	87.4	94.0	97.3	85.2	52.9	58.1	81.3
	4-class	ProGAN	RGB	4	~	✓	99.8	87.0	74.0	93.2	92.3	94.1	95.8	97.5	87.8	58.5	59.6	85.4
	8-class	ProGAN	RGB	8	~	✓	99.9	94.2	78.9	94.3	91.9	95.4	98.9	99.4	91.2	58.6	63.8	87.9
	16-class	ProGAN	RGB	16	~	✓	100.	98.2	87.7	96.4	95.5	98.1	99.0	99.7	95.3	63.1	71.9	91.4
Ours	No aug	ProGAN	RGB	20			100.	96.3	72.2	84.0	100.	67.0	93.5	90.3	96.2	93.6	98.2	90.1
	Blur only	ProGAN	RGB	20	~		100.	99.0	82.5	90.1	100.	74.7	66.6	66.7	99.6	53.7	95.1	84.4
	JPEG only	ProGAN	RGB	20		✓	100.	99.0	87.8	93.2	91.8	97.5	99.0	99.5	88.7	78.1	88.1	93.0
	Blur+JPEG (0.5)	ProGAN	RGB	20	~	✓	100.	98.5	88.2	96.8	95.4	98.1	98.9	99.5	92.7	63.9	66.3	90.8
	Blur+JPEG (0.1)	ProGAN	RGB	20	t	†	100.	99.6	84.5	93.5	98.2	89.5	98.2	98.4	97.2	70.5	89.0	92.6

Wang, Sheng-Yu, Oliver Wang, Richard Zhang, Andrew Owens, and Alexei A. Efros. "CNN-generated images are surprisingly easy to spot... for now." In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 8695-8704. 2020.

Towards the Detection of Diffusion Model Deepfakes^(1/2)

	Wang et a	al. (2020)	Gragnaniello	Mandelli et al. (2022a)	
AUROC / Pa@5% / Pa@1%	Blur+JPEG (0.5)	Blur+JPEG (0.1)	ProGAN	StyleGAN2	
ProGAN StyleGAN ProjectedGAN Diff-StyleGAN2 Diff-ProjectedGAN Average	100.0 / 100.0 / 100.0 98.7 / 93.7 / 81.4 94.8 / 73.8 / 49.1 99.9 / 99.6 / 97.9 93.8 / 69.5 / 43.3 97.4 / 87.3 / 74.3	100.0 / 100.0 / 100.0 99.0 / 95.5 / 84.4 90.9 / 61.8 / 34.5 100.0 / 99.9 / 99.3 88.8 / 54.6 / 27.2 95.7 / 82.4 / 69.1	100.0 / 100.0 / 100.0 100.0 / 100.0 / 100.0 100.0 / 99.9 / 99.3 100.0 / 100.0 / 100.0 99.9 / 99.9 / 99.2 100.0 / 100.0 / 99.7	100.0 / 100.0 / 100.0 100.0 / 100.0 / 100.0 99.9 / 99.6 / 97.8 100.0 / 100.0 / 100.0 99.8 / 99.6 / 96.6 99.9 / 99.8 / 98.9	91.2 / 54.6 / 27.5 89.6 / 43.6 / 14.7 59.4 / 8.4 / 2.4 100.0 / 100.0 / 99.9 62.1 / 10.5 / 2.8 80.4 / 43.4 / 29.5
DDPM IDDPM ADM PNDM LDM Average	85.2 / 37.8 / 14.2 81.6 / 30.6 / 10.6 68.3 / 13.2 / 3.4 79.0 / 27.5 / 9.2 78.7 / 24.7 / 7.4 78.6 / 26.8 / 9.0	80.8 / 29.6 / 9.3 79.9 / 27.6 / 7.8 68.8 / 14.1 / 4.0 75.5 / 22.6 / 6.3 77.7 / 24.3 / 6.9 76.6 / 23.7 / 6.8	96.5 / 79.4 / 39.1 94.3 / 64.8 / 25.7 77.8 / 20.7 / 5.2 91.6 / 52.0 / 16.6 96.7 / 79.9 / 42.1 91.4 / 59.3 / 25.7	95.1 / 69.5 / 30.7 92.8 / 58.0 / 21.2 70.6 / 13.0 / 2.5 91.5 / 53.9 / 22.2 97.0 / 81.8 / 48.9 89.4 / 55.2 / 25.1	57.4 / 3.8 / 0.6 62.9 / 7.0 / 1.3 60.5 / 8.2 / 1.8 71.6 / 15.4 / 4.0 54.8 / 7.7 / 2.1 61.4 / 8.4 / 2.0

Ricker, Jonas, Simon Damm, Thorsten Holz, and Asja Fischer. "Towards the Detection of Diffusion Model Deepfakes." *arXiv* preprint arXiv:2210.14571 (2022)

Towards the Detection of Diffusion Model Deepfakes^(2/2)

(a) AUROC

(b) PD@1%.

Ricker, Jonas, Simon Damm, Thorsten Holz, and Asja Fischer. "Towards the Detection of Diffusion Model Deepfakes." *arXiv* preprint arXiv:2210.14571 (2022)

Foundation Model

- "Any model that is trained on broad data (generally using self-supervision at scale) that can be adapted (e.g. fine-tuned) to a wide range of downstream tasks".
- Foundation Models: BERT,GPT-n,CLIP, ...
- CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on 400 millions of (image, text) pairs.

- The Center for Research on Foundation Models(CRFM), Stanford Institute for Human-Centered Artificial Intelligence's(HAI) coined the term "Foundation Model" in August 2021.
- Alec Radford, et al., "Learning transferable visual models from natural language supervision," International conference on ma- chine learning (ICML), 2021.

Other Popular Vision Foundation Models

Stable Diffusion

(b) Model: Segment Anything Model (SAM)

Segment Anything

annotate

(c) Data: data engine (top) & dataset (bottom)

Dino/Dinov2

- Rombach, Robin, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. "High-resolution image synthesis with latent diffusion models", CVPR. 2022.
- Kirillov, Alexander, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao et al. "Segment anything." ICCV 2023.
- Oquab, Maxime, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez et al. "Dinov2: Learning robust visual features without supervision." arXiv preprint arXiv:2304.07193 (2023).

Strong Generalization Capability to Many Downstream Tasks^(1/2)

WinCLIP •

٠

Jeong, Jongheon, Yang Zou, Taewan Kim, Dongging Zhang, Avinash Ravichandran, and Onkar Dabeer. "Winclip: Zero-/few-shot anomaly classification and segmentation." CVPR. 2023. Rao, Yongming, Wenliang Zhao, Guangyi Chen, Yansong Tang, Zheng Zhu, Guan Huang, Jie Zhou, and Jiwen Lu. "Denseclip: Language-guided dense prediction with context-aware prompting." CVPR 2022.

Strong Generalization Capability to Many Downstream Tasks^(2/2)

• Open-Vocabulary Panoptic Segmentation with Text-to-Image Diffusion Models (ODISE)

Xu, Jiarui, Sifei Liu, Arash Vahdat, Wonmin Byeon, Xiaolong Wang, and Shalini De Mello. "Open-vocabulary panoptic segmentation with text-to-image diffusion models." In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 2955-2966. 2023.

DE-FAKE: Detection and Attribution of Fake Images Generated by Text-to-Image Generation Models

Sha, Zeyang, Zheng Li, Ning Yu, and Yang Zhang. "De-fake: Detection and attribution of fake images generated by text-to-image diffusion models." *ACM CCS 2023x*`

42

Parameter Efficient Transfer Learing (PETL)

Sung, Yi-Lin, Jaemin Cho, and Mohit Bansal. "Lst: Ladder side-tuning for parameter and memory efficient transfer learning." Advances in Neural Information Processing Systems 35 (2022): 12991-13005.

Parameter Efficient Transfer Learning (PETL)

Visual Prompt Tuning

- Hu, Edward J., Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. "Lora: Low-rank adaptation of large language models." *arXiv preprint arXiv:2106.09685* (2021).
- Jia, Menglin, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and Ser-Nam Lim. "Visual prompt tuning." ECCV 2022.

Ladder Side Tuning

Sung, Yi-Lin, Jaemin Cho, and Mohit Bansal. "Lst: Ladder side-tuning for parameter and memory efficient transfer learning." Advances in Neural Information Processing Systems 35 (2022): 12991-13005.

Deepfake Detection through Foundation Model

(a) Top-level architercture

(b) Attention Decoder

Deepfake Detection through Foundation Model

Detection	Training	Generation		1	festing DM	ls		<u></u>		Testing (GANs		Total Avg.
method	dataset	model	ADM	DDPM	IDDPM	PNDM	LDM	Pro- GAN	Style- GAN	Projected- GAN	Diff- StyleGAN2	Diff- ProjectedGAN	
CNNDet [4]	LSUN	ProGAN	50.1/66.4	50.3/82.5	50.1/78.9	50.1/77.5	50.2/75.9	99.7/100	59.2/97.1	52.6/92.6	80.9/99.7	51.6/91.2	59.5/86.2
GANDet [30]	LSUN	ProGAN	50.0/61.2	50.0/59.0	50.1/64.6	50.4/73.4	50.1/56.9	54.4/89.9	51.4/90.0	50.1/58.5	95.1/99.6	50.3/62.8	55.2/71.6
SBI [32]	FF++	Multiple	49.5/49.3	50.2/50.0	50.7/50.6	49.6/49.9	50.2/50.2	50.0/50.2	49.8/50.2	49.4/49.5	50.1/50.0	50.8/50.9	50.0/50.1
TwoStream [33]	FF++	Multiple	50.0/49.9	50.0/52.3	50.0/50.9	50.0/56.2	50.0/50.3	50.0/53.4	50.0/53.0	50.0/47.9	50.0/52.9	50.0/49.2	50.0/51.6
CNNDet* (Tuning)	LSUN-B	ADM	94.3/99.4	95.0/99.6	98.0/99.9	97.5/99.6	90.0/98.9	98.6/99.8	86.2/97.0	70.9/88.6	70.2/86.8	68.6/88.6	86.9/95.8
CNNDet* (Re-train)	LSUN-B	ADM	92.8/99.4	93.3/99.5	98.4/99.9	95.4/99.8	85.4/98.7	94.3/98.8	82.5/97.5	63.5/82.6	61.5/87.4	61.8/85.6	82.9/94.9
	LSUN-B.	ADM	99.2/100	100/100	99.7/100	99.9/100	99.8/100	100/100	99.8/100	99.7/100	99.9/100	99.8/100	99.8/100
AdaptCLIP (ours)	LSUN-B.	IDDPM	98.5/100	99.6/100	99.6/100	99.8/100	99.8/100	99.7/100	99.5/100	99.4/100	99.8/100	99.2/99.9	99.5/99.9
and a standard standa	LSUN-B.	LDM	72.5/91.3	94.0/99.1	87.4/97.5	99.2/100	99.3/100	99.5/100	98.9/99.9	98.2/99.8	99.4/100	98.6/99.9	94.7/98.8

Adaptation	LSUN-B	FEHO	MSCOCO
Method	(Text2Image)	ITTIQ	MISCOCO
(a) CNNDet*(Tuning)	56.2/60.3	50.4/63.4	47.6/45.5
(b) LinearCLIP	76.6/85.3	51.8/62.2	50.2/51.8
(c) AdaptCLIP (ours)	99.7/100	60.8/77.2	57.4/60.9

ACC(%)/AUC(%) scores

More Deepfake Detection through Foundation Model

Chang, You-Ming, Chen Yeh, Wei-Chen Chiu, and Ning Yu. "AntifakePrompt: Prompt-Tuned Vision-Language Models are Fake Image Detectors." *arXiv preprint arXiv:2310.17419* (2023).

More Deepfake Detection through Foundation Model

Methods	Training set	No. of param.	MS COCO	Flickr	SD2	SDXL	IF	DALLE-2
Wange-2020	ImageNet vs. ProGAN	23.51M	96.87	96.67	0.17	0.17	19.17	3.40
DE-FAKE	MS COCO vs. SD2	308.02M	85.97	90.67	97.10	90.50	99.20	68.97
DIRE	LSUN Bedroom vs. StyleGAN	23.51M	81.77	77.53	3.83	18.17	6.93	2.13
InstructBLIP	-	188.84M	98.93	99.63	40.27	23.07	20.63	41.77
InstructBLIP + LoRA	MS COCO vs. SD2	4.19M	95.73	91.83	98.03	96.33	86.60	99.57
AntifalzaDromat	MS COCO vs. SD2	4.86K	95.37	91.00	97.83	97.27	89.73	99.57
AnthakePrompt	MS COCO vs. SD2+LaMa	4.86K	90.83	81.04	97.10	97.10	88.37	99.07
Methods	Training set	No. of param.	SGXL	ControlNet	Inj LaMa	painting SD2	Sup LTE	er Res. SD2
Wange_2020	ImageNet vs. ProGAN	23.51M	79.30	11 /3	7 53	0.17	15.27	1.40
DE-EAKE	MS COCO vs. SD2	308.02M	56.90	63.97	13.03	16.00	9 97	29.70
DIRE	LSUN Bedroom vs. StyleGAN	23.51M	45.27	9.90	13.23	11.37	12.53	2.77
InstructBLIP	-	188.84M	69.53	33.97	10.90	44.23	97.23	69.10
InstructBLIP + LoRA	MS COCO vs. SD2	4.19M	97.67	92.87	59.50	93.03	99.53	99.97
Antifalso Duoment	MS COCO vs. SD2	4.86K	99.97	91.47	39.03	85.20	99.90	99.93
AntifakePrompt	MS COCO vs. SD2+LaMa	4.86K	99.93	93.27	58.53	90.70	100.00	99.97
Mathada	Tusining and	No. of moment	Deeper-		Attack		A -	
Methods	Training set	No. of param.	Forensics	Adver.	Backdoor	Data Poisoning	A	erage
Wange-2020	ImageNet vs. ProGAN	23.51M	0.30	4.93	15.50	0.97	2	2.08
DE-FAKE	MS COCO vs. SD2	308.02M	86.97	60.40	22.23	55.87	5	9.22
DIRE	LSUN Bedroom vs. StyleGAN	23.51M	0.27	1.60	1.93	1.00	1	8.14
InstructBLIP	-	188.84M	13.83	5.50	3.17	1.60	4	2.09
InstructBLIP + LoRA	MS COCO vs. SD2	4.19M	98.80	64.30	53.40	50.87	8	6.13
AntifalzaDuamat	MS COCO vs. SD2	4.86K	97.90	96.70	93.00	91.57	9	1.59
Antilakerrompt	MS COCO vs. SD2+LaMa	4.86K	97.77	97.20	97.10	93.63	9	2.60

Chang, You-Ming, Chen Yeh, Wei-Chen Chiu, and Ning Yu. "AntifakePrompt: Prompt-Tuned Vision-Language Models are Fake Image Detectors." *arXiv preprint arXiv:2310.17419* (2023).

Possible Countermeasures

- Passive Defense
 - Deepfake Detection
 - Digital Watermark
- Proactive Defense
 - Adversarial Attack

Artificial Fingerprinting for Generative Models: Rooting Deepfake Attribution in Training Data

Yu, Ning, Vladislav Skripniuk, Sahar Abdelnabi, and Mario Fritz. "Artificial fingerprinting for generative models: Rooting deepfake attribution in training data." In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 14448-14457. 2021.

A Recipe for Watermarking Diffusion Models

Zhao, Yunqing, Tianyu Pang, Chao Du, Xiao Yang, Ngai-Man Cheung, and Min Lin. "A recipe for watermarking diffusion models." arXiv preprint arXiv:2303.10137 (2023).

Enhancing the Robustness of Deep Learning Based Fingerprinting to Improve Deepfake Attribution (1/2)

54

Enhancing the Robustness of Deep Learning Based Fingerprinting to Improve Deepfake Attribution (2/2)

Chieh-Yin Liao, Chen-Hsiu Huang, Jun-Cheng Chen, Ja-Ling Wu, "Enhancing the Robustness of Deep Learning Based Fingerprinting to Improve Deepfake Attribution," in ACM Multimedia Asia conference (MMAsia), 2022.

Research Center for Information Technology Innovation, Academia Sinica

55

Tree-Ring Watermarks: Fingerprints for Diffusion Images that are Invisible and Robust

Wen, Yuxin, John Kirchenbauer, Jonas Geiping, and Tom Goldstein. "Tree-Ring Watermarks: Fingerprints for Diffusion Images that are Invisible and Robust." *arXiv preprint arXiv:2305.20030* (2023).

Possible Countermeasures

- Passive Defense
 - Deepfake Detection
 - Digital Watermark
- Proactive Defense
 - >Adversarial Attack

Disrupting Deepfakes: Adversarial Attacks Against Conditional Image Translation Networks and Facial Manipulation Systems

Cross-Model Universal Adversarial Watermark

Hao Huang, Yongtao Wang, Zhaoyu Chen, Yuze Zhang, Yuheng Li, Zhi Tang, Wei Chu, Jingdong Chen, Weisi Lin, and Kai-Kuang Ma. "Cmuawatermark: A cross-model universal adversarial watermark for combating deepfakes." In *Proceedings of the AAAI Conference on Artificial Intelligence*, vol. 36, no. 1, pp. 989-997. 2022.

The Proposed Cross-Model Universal Adversarial Watermark

TABLE I: The evaluation	results of	cross-model	UAP.
-------------------------	------------	-------------	------

DGMs	StarGAN		AggG	AN	ATTO	GAN	HiSD	
Attacks	ASR	ℓ_2	ASR	ℓ_2	ASR	ℓ_2	ASR	ℓ_2
CMUA_v1	100.0%	0.457	99.2%	0.107	20.2%	0.037	N/A^1	N/A^1
CMUA_v2	100.0%	0.199	100.0%	0.128	95.3%	0.066	100.0%	0.108
CMUA_12	97.0%	0.081	100.0%	0.046	86.1%	0.047	100.0%	0.107
Ours	100.0%	0.766	100.0%	0.133	98.2%	0.124	100.0%	0.113

TABLE II: The results of visual quality for perturbed images.

	PSNR↑	SSIM↑	Time	Batch size
CMUA_v2	32.4939	0.7821	N/A^2	64
CMUA_12	32.2755	0.7736	800s	12
Ours	33.4651	0.8186	170s	8

Shuo-Yen Lin, Jun-Cheng Chen, Jia-Ching Wang, "A Comparative Study of Cross-Model Universal Adversarial Perturbation for Face Forgery," in IEEE International Conference on Visual Communications and Image Processing (VCIP), 2022.

Research Center for Information Technology Innovation, Academia Sinica

60

GLAZE

Original artwork by Hollie Mengert

Artist (V)

in Hollie's style

Model training

Shan, Shawn, Jenna Cryan, Emily Wenger, Haitao Zheng, Rana Hanocka, and Ben Y. Zhao. "Glaze: Protecting artists from style mimicry by text-to-image models." arXiv preprint arXiv:2302.04222 (2023).

Takeways

- The evolution of the deepfake technologies (VAE, GAN, Diffusion models, etc) is fast and requires more ethical consideration for it.
- Educate the public to less rely on the videos as the evidence.
- The release of powerful AI models should be careful.

Safe Deployment of Diffusion Model

Gandikota, Rohit, Joanna Materzynska, Jaden Fiotto-Kaufman, and David Bau. "Erasing concepts from diffusion models." *arXiv preprint arXiv:2303.07345* (2023).

Thank You! Any Questions?

Jun-Cheng Chen Research Center for Information Technology Innovation, Academia Sinica pullpull@citi.sinica.edu.tw

References

- [Li et al. 2020] Li, Lingzhi, Jianmin Bao, Ting Zhang, Hao Yang, Dong Chen, Fang Wen, and Baining Guo. "Face x-ray for more general face forgery detection." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5001-5010. 2020.
- [Rössler et al. 2019] Rossler, Andreas, Davide Cozzolino, Luisa Verdoliva, Christian Riess, Justus Thies, and Matthias Nießner.
 "Faceforensics++: Learning to detect manipulated facial images." In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1-11. 2019.
- [Liu et al. 2020] Liu, Zhengzhe, Xiaojuan Qi, and Philip HS Torr. "Global texture enhancement for fake face detection in the wild." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8060-8069. 2020.
- [Hui et al. 2022] Guo, Hui, Shu Hu, Xin Wang, Ming-Ching Chang, and Siwei Lyu. "Eyes Tell All: Irregular Pupil Shapes Reveal GANgenerated Faces." International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2022.
- [Masi et al. 2020] Masi, Iacopo, Aditya Killekar, Royston Marian Mascarenhas, Shenoy Pratik Gurudatt, and Wael AbdAlmageed.
 "Two-branch recurrent network for isolating deepfakes in videos." In European Conference on Computer Vision, pp. 667-684.
 Springer, Cham, 2020.
- [Wang et al. 2020] Wang, Sheng-Yu, Oliver Wang, Richard Zhang, Andrew Owens, and Alexei A. Efros. "CNN-generated images are surprisingly easy to spot... for now." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8695-8704. 2020.
- [Ho et al. 2020] Ho, Jonathan, Ajay Jain, and Pieter Abbeel. "Denoising diffusion probabilistic models." Advances in Neural Information Processing Systems 33 (2020): 6840-6851.
- [Haliassos et al. 2022] Haliassos, Alexandros, Rodrigo Mira, Stavros Petridis, and Maja Pantic. "Leveraging Real Talking Faces via Self-Supervision for Robust Forgery Detection." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14950-14962. 2022.

References

- [Chai et al. 2020] Chai, Lucy, David Bau, Ser-Nam Lim, and Phillip Isola. "What makes fake images detectable? understanding properties that generalize." In European Conference on Computer Vision, pp. 103-120. Springer, Cham, 2020.
- [Zhao et al. 2021] Zhao, Tianchen, Xiang Xu, Mingze Xu, Hui Ding, Yuanjun Xiong, and Wei Xia. "Learning Self-Consistency for Deepfake Detection." In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15023-15033. 2021.
- [Ning et al. 2019] Yu, Ning, Larry S. Davis, and Mario Fritz. "Attributing fake images to gans: Learning and analyzing gan fingerprints." In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7556-7566. 2019.
- [Ning et al. 2021] Yu, Ning, Vladislav Skripniuk, Sahar Abdelnabi, and Mario Fritz. "Artificial fingerprinting for generative models: Rooting deepfake attribution in training data." In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14448-14457. 2021.
- [Goodfellow et al. 2015] Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples." ICLR 2015.
- [Ruiz et al. 2020] Ruiz, Nataniel, Sarah Adel Bargal, and Stan Sclaroff. "Disrupting deepfakes: Adversarial attacks against conditional image translation networks and facial manipulation systems." In European Conference on Computer Vision, pp. 236-251. Springer, Cham, 2020.
- [Chris Ume and Miles Fisher] https://www.youtube.com/watch?v=nwOywe7xLhs

