# Video Forensics Beyond Deepfakes

#### Matthew C. Stamm

Multimedia & Information Security Lab

**Drexel University** 

mstamm@drexel.edu





# Video Forgeries

- Fake & manipulated video is important threat
- Deepfakes well studied
- Lots of other manipulations!
  - Splicing (greenscreen)
  - Video editing software
  - Al-based manipulations (inpainting)









# Forgery Detection & Localization

- Many manipulation detectors & localizers
- Strong performance on images

#### Noiseprint

#### Forensic Similarity Graph



- Video is just a sequence of images, right?
- When applied to video existing detectors all fail!





# Effect of H.264 Encoding



- Why does this happen?
- Detectors/localizers search for inconsistent forensic traces
- H.264 encodes each macroblock differently within a frame
  - Introduces local variation into forensic traces
  - Decreases quality of traces nonuniformly
- Introduces unintended forensic inconsistencies





#### Video Forensics

How can we overcome this problem?

• Use *context* and *self-attention* to account for variation in forensic traces

#### VideoFACT: Video Forensics using Attention, Context, and Traces







# **Overcoming Video Challenges**

#### **<u>Context</u>**: Exploit conditional information

- Distribution of forensic traces changes based on several factors
  - Coding parameters/strength, scene texture, illumination, etc.
- Use *context embeddings* to capture this information
- Network learns distribution of forensic traces conditioned on context

#### <u>Self-Attention</u>: Estimate quality & relative importance of info

- De-emphasize embeddings from regions with low-quality traces
- Emphasize embeddings from regions important for forensic decision making





## **High-Level Overview**

- Video frame divided into 128 x 128 pixel analysis blocks
- Spatial position remembered for later use by transformer







### **High-Level Overview**

- Forensic & context embeddings extracted from each analysis block
- Concatenated to produce joint feature set





# Forensic Embeddings

- Use MISLnet to extract forensic embeddings
- Pretrained to perform camera model identification
  - Prior work shows this learns transferrable generic forensic embeddings [1]
  - Ablation study shows this is important
- Weights frozen while context embeddings are initially learned



[1] O. Mayer, B. Bayar, and M. C. Stamm. "Learning unified deep-features for multiple forensic tasks." In ACM IH&MMSec, pp. 79-84. 2018.





## **Context Embeddings**

- Use separate CNN to learn context embeddings
  - Xception modified to use only a single middle flow module
  - Avoid overfitting to abstract scene representations
- Followed by a 1 × 1 layer to reduce dimensionality
- Trained while context feature extractor is frozen







# **High-Level Overview**

- Deep self-attention mechanism uses transformer to examine sequence of embeddings
  - Spatial position embeddings also used
  - Produces set of spatial attention maps
- Joint features weighted & combined using spatial attention maps





T. D. Nguyen, S. Fang, and M. C. Stamm, "VideoFACT: Detecting Video Forgeries Using Attention, Scene Context, and Forensic Traces," to appear at WACV 2024, https://arxiv.org/abs/2211.15775



**Attention Informed** 

# **Deep Self-Attention Module**

- Transformer built with 12 encoder blocks
- Jointly analyze sequence of
  - Forensic embeddings
  - Context embeddings
  - Spatial position embeddings
- Outputs spatial attention maps
  - Small weight to regions with low-quality info
  - Large weight to regions with high-quality & relevant info



Sufficient texture & illumination, High expected forensic information







## **High-Level Overview**

- Final forensic decisions made using attention-refined features
- Separate networks for detection and localization
  - Disregard localization if no detection



#### Forensic Decision Making -





#### Datasets

- Almost no public video forgery datasets
  - Only Adobe VideoSham (WACV 2023) for evaluation
  - None for training
- "Standard Manipulation" datastets created by us
- "In-the-Wild" datasets
  - Al-Based Inpainting
    - Created by us using E2FGVI & FuseFormer algorithms
  - Deepfakes
    - DeepFaceLab deepfakes created by us
    - FaceForensics++, Deepfake Detection Dataset (DFD)



#### Deepfake Video

Inpainted Video

VideoSham











# Results – Splicing & Editing

- Very strong detection & localization performance
  - VCMS Splicing
  - VPVM Editing
  - VPIM Editing (Invisible)
- Existing detectors largely fail

| Method          | VCMS        |             |             |            | VPVM        |             |             |            | VPIM        |             |             |            |
|-----------------|-------------|-------------|-------------|------------|-------------|-------------|-------------|------------|-------------|-------------|-------------|------------|
|                 | Det.<br>mAP | Det.<br>ACC | Loc.<br>MCC | Loc.<br>F1 | Det.<br>mAP | Det.<br>ACC | Loc.<br>MCC | Loc.<br>F1 | Det.<br>mAP | Det.<br>ACC | Loc.<br>MCC | Loc.<br>F1 |
| FSG [40]        | 0.445       | 0.497       | 0.001       | 0.064      | 0.431       | 0.480       | 0.004       | 0.067      | 0.485       | 0.494       | 0.011       | 0.065      |
| EXIFnet [26]    | 0.610       | 0.502       | 0.208       | 0.230      | 0.568       | 0.501       | 0.213       | 0.236      | 0.509       | 0.500       | 0.026       | 0.124      |
| Noiseprint [12] | 0.521       | 0.500       | 0.041       | 0.030      | 0.495       | 0.500       | 0.012       | 0.013      | 0.511       | 0.500       | 0.010       | 0.010      |
| ManTra-Net [58] | 0.451       | 0.500       | 0.079       | 0.114      | 0.526       | 0.500       | 0.110       | 0.145      | 0.513       | 0.500       | 0.025       | 0.064      |
| MVSS-Net [8]    | 0.883       | 0.602       | 0.545       | 0.557      | 0.644       | 0.529       | 0.267       | 0.279      | 0.482       | 0.492       | 0.018       | 0.042      |
| VideoFACT       | 0.995       | 0.987       | 0.530       | 0.526      | 0.980       | 0.950       | 0.676       | 0.697      | 0.869       | 0.797       | 0.515       | 0.547      |







## **Results - Inpainting**

- Baseline VideoFACT: not trained on any inpainting data
  - Good detection & localization results
- VideoFACT-FT: fine tuned using very small training dataset
  - Excellent detection & localization results
- Existing approaches largely fail

| Mathad          | E2          | FGVI Inp    | painted V   | ideos      | FuseFormer Inpainted Videos |             |             |            |  |  |
|-----------------|-------------|-------------|-------------|------------|-----------------------------|-------------|-------------|------------|--|--|
| Method          | Det.<br>mAP | Det.<br>ACC | Loc.<br>MCC | Loc.<br>Fl | Det.<br>mAP                 | Det.<br>ACC | Loc.<br>MCC | Loc.<br>Fl |  |  |
| FSG [40]        | 0.386       | 0.452       | 0.208       | 0.302      | 0.351                       | 0.484       | 0.241       | 0.290      |  |  |
| EXIFnet [26]    | 0.635       | 0.501       | 0.160       | 0.244      | 0.506                       | 0.507       | 0.146       | 0.225      |  |  |
| Noiseprint [12] | 0.601       | 0.500       | 0.091       | 0.232      | 0.471                       | 0.500       | 0.001       | 0.200      |  |  |
| ManTra-Net [58] | 0.499       | 0.500       | 0.009       | 0.055      | 0.613                       | 0.500       | 0.031       | 0.204      |  |  |
| MVSS-Net [8]    | 0.341       | 0.435       | 0.058       | 0.227      | 0.230                       | 0.359       | 0.029       | 0.206      |  |  |
| VideoFACT       | 0.782       | 0.687       | 0.225       | 0.309      | 0.652                       | 0.527       | 0.118       | 0.237      |  |  |
| VideoFACT-FT    | 0.908       | 0.820       | 0.411       | 0.445      | 0.948                       | 0.846       | 0.361       | 0.411      |  |  |







## Results – Adobe VideoSham

- VideoSHAM contains multiple video manipulations
  - Color change, object add/remove, text add/remove, etc.
- VideoFACT not trained or finetuned on any of this data
  - Strongest reported results
- Existing approaches largely fail

| Mathad          | 283         | VideoSham [42] |             |            |  |  |  |  |  |
|-----------------|-------------|----------------|-------------|------------|--|--|--|--|--|
| Method          | Det.<br>mAP | Det.<br>ACC    | Loc.<br>MCC | Loc.<br>Fl |  |  |  |  |  |
| FSG [40]        | 0.596       | 0.538          | 0.162       | 0.246      |  |  |  |  |  |
| EXIFnet [26]    | 0.584       | 0.555          | 0.148       | 0.246      |  |  |  |  |  |
| Noiseprint [12] | 0.422       | 0.447          | 0.034       | 0.206      |  |  |  |  |  |
| ManTra-Net [58] | 0.551       | 0.553          | 0.009       | 0.058      |  |  |  |  |  |
| MVSS-Net [8]    | 0.595       | 0.449          | 0.142       | 0.096      |  |  |  |  |  |
| VideoFACT       | 0.691       | 0.656          | 0.193       | 0.312      |  |  |  |  |  |







#### Results - Deepfakes

- Baseline VideoFACT performance is mixed
- VideoFACT-FT: fine tuned 10% of DFD & FF++ training datasets
  - Excellent detection & localization results
- VideoFACT-FT outperforms existing approaches
  - Splicing detectors largely fail
  - Outperforms existing deepfake detectors on this experiment

| Method           | DeepFaceLab Deepfake Videos |             |             |            | DFD [14]    |             |             |            | FF++ [49]   |             |             |            |
|------------------|-----------------------------|-------------|-------------|------------|-------------|-------------|-------------|------------|-------------|-------------|-------------|------------|
|                  | Det.<br>mAP                 | Det.<br>ACC | Loc.<br>MCC | Loc.<br>F1 | Det.<br>mAP | Det.<br>ACC | Loc.<br>MCC | Loc.<br>F1 | Det.<br>mAP | Det.<br>ACC | Loc.<br>MCC | Loc.<br>Fl |
| FSG [40]         | 0.450                       | 0.515       | 0.204       | 0.137      | 0.449       | 0.325       | 0.097       | 0.043      | 0.509       | 0.519       | 0.144       | 0.113      |
| EXIFnet [26]     | 0.447                       | 0.492       | 0.180       | 0.133      | 0.489       | 0.258       | 0.095       | 0.051      | 0.487       | 0.519       | 0.141       | 0.073      |
| Noiseprint [12]  | 0.591                       | 0.500       | 0.010       | 0.062      | 0.489       | 0.252       | 0.000       | 0.021      | 0.486       | 0.518       | 0.000       | 0.066      |
| ManTra-Net [58]  | 0.450                       | 0.500       | 0.004       | 0.042      | 0.476       | 0.253       | 0.017       | 0.025      | 0.504       | 0.514       | 0.070       | 0.091      |
| MVSS-Net [8]     | 0.464                       | 0.498       | 0.199       | 0.189      | 0.513       | 0.532       | 0.152       | 0.108      | 0.499       | 0.487       | 0.133       | 0.164      |
| VideoFACT        | 0.666                       | 0.648       | 0.415       | 0.410      | 0.468       | 0.444       | 0.081       | 0.077      | 0.529       | 0.519       | 0.160       | 0.167      |
| VideoFACT-FT     | 0.988                       | 0.922       | 0.745       | 0.732      | 0.937       | 0.804       | 0.536       | 0.490      | 0.916       | 0.837       | 0.661       | 0.645      |
| E.ViT [10]       | 0.896                       | 0.805       | N/A         | N/A        | 0.811       | 0.737       | N/A         | N/A        | 0.764       | 0.676       | N/A         | N/A        |
| CCE.ViT [10]     | 0.962                       | 0.837       | N/A         | N/A        | 0.816       | 0.761       | N/A         | N/A        | 0.796       | 0.719       | N/A         | N/A        |
| CNN Ensemble [6] | 0.936                       | 0.857       | N/A         | N/A        | 0.829       | 0.745       | N/A         | N/A        | 0.713       | 0.672       | N/A         | N/A        |







#### Summary

- H.264 significantly harms forgery detectors & localizers
- Can overcomes this using multiple strategies
  - Context embeddings
  - Self-attention
- Strong experimental performance still much to do!
- Paper available at: <u>https://arxiv.org/abs/2211.15775</u>





# Talking Head Videoconferencing

- Videoconferencing consumes significant bandwidth
- Recent research uses AI to compress talking head videos
  - Capture facial expression of sender
  - Use to synthesize face at receiver
- Several recent approaches
  - NVIDIA Maxine
  - X2Face
  - DA-GAN
  - SAFA
  - Many more!







### **Puppeteering Attacks**

- Problem: *Puppeteering attacks*
- "Driving" speaker controls target face like a puppet in real time
- Deepfake detectors can't protect against this
  - Everything is a deepfake!







#### Al Videoconferencing: Closer Look







#### **Pupetteering Attack**







## Key observaction

- Can compare facial landmarks from sender and those in reconstructed speaker
- Self-driven video
  - Landmarks are tightly coupled
- Puppeteered video
  - Difference in landmark positions
  - Caused by differences in facial geometry

Puppeteered Reconstruction









## **Puppeteering Detection**

- Reconstruct speaker at receiver
- Pass reconstructed face through encoder
- Obtain facial expression and pose estimation vector (landmarks)

 $f_t' = h(I_t')$ 







## **Puppeteering Detection**

 Measure biometric difference between landmark vectors

$$d_t = m(f_t, f_t') = \|f_t - f_t'\|_2^2$$

Control for depth

$$c_t = d_t \left(\frac{r_t}{r_0}\right)$$

• Average over time

$$\Delta_t = \frac{1}{W} \sum_{\ell=0}^{W-1} c_{t-\ell}$$

Threshold for detection





## **Puppeteering Dataset**

- Created dataset of 1728 puppeteered videos
  - Public videos of celebrities
- Created using four different systems
  - DaGAN
  - SAFA
  - X2Face
  - ReenactGAN

Dataset available at: https://gitlab.com/MISLgit/talking-headpuppeteering-defense/



#### multimedia & mis information security tab

Puppeteered

Reconstructed

Target



## **Experimental Results**

| 2           | Proposed | <b>CNN</b> Ensemble | Efficient ViT | Cross-Efficient ViT |
|-------------|----------|---------------------|---------------|---------------------|
| DaGAN       | 99.31%   | 66.80%              | 76.26%        | 69.81%              |
| Reenact GAN | 94.83%   | 69.73%              | 76.96%        | 68.58%              |
| X2Face      | 99.80%   | 68.24%              | 79.00%        | 78.15%              |
| SAFA        | 98.92%   | 67.35%              | 74.86%        | 67.81%              |
| Average     | 98.03%   | 68.03%              | 76.77%        | 71.09%              |

- Strong detection performance across all talking head video systems
- Significantly outperforms deepfake detectors (as expected)
  - Higher performing deepfake detectors misclassify self-reenacted videos as real!





#### **Experimental Results**

| 74          | White  | White  | Asian  | Asian  | Black  | Black  | Hispanic | Hispanic |
|-------------|--------|--------|--------|--------|--------|--------|----------|----------|
|             | male   | Female | Male   | Female | Male   | Female | Male     | Female   |
| DaGAN       | 98.37% | 99.60% | 97.04% | 98.13% | 98.26% | 99.15% | 99.71%   | 99.42%   |
| Reenact GAN | 94.10% | 93.58% | 95.27% | 95.74% | 93.54% | 96.08% | 94.37%   | 96.84%   |
| X2Face      | 99.37% | 98.26% | 99.46% | 97.35% | 98.14% | 99.31% | 98.46%   | 99.02%   |
| SAFA        | 99.74% | 99.91% | 97.10% | 98.75% | 98.48% | 99.23% | 98.20%   | 98.61%   |
| Average     | 97.99% | 97.84% | 97.22% | 97.49% | 97.19% | 98.44% | 97.44%   | 98.47%   |

- Examined system for algorithmic bias
- Consistent performance across race/ethnicity and sex





#### Summary

- Many video forgery types beyond just deepfakes
- Detect multiple forgery types by using forensic traces, context, and self-attention
- Detect puppeteering by exploiting mismatch in implicit biometric information
- Much more work to be done!





# Video Forensics Beyond Deepfakes

#### Matthew C. Stamm

Multimedia & Information Security Lab

**Drexel University** 

mstamm@drexel.edu



